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Semiclassical spatial correlations in chaotic wave functions
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We study the spatial autocorrelation of energy eigenfunctionscn(q) corresponding to classically chaotic
systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral
averageC«(q1,q2,E) of cn(q1)cn* (q2), defined as the average over eigenstates within an energy window«
centered atE. In this frameworkC« is the Fourier transform in the momentum space of the spectral Wigner
function W(x,E;«). Our study reveals the chord structure thatC« inherits from the spectral Wigner function
showing the interplay between the size of the spectral average window, and the spatial separation scale. We
discuss under which conditions is it possible to define a local system independent regime forC« . In doing so,
we derive an expression that bridges the existing formulas in the literature and find expressions for
C«(q1,q2,E) valid for any separation sizeuq12q2u.
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I. INTRODUCTION AND MOTIVATION

One of the key issues in the quantum chaos research i
quest for quantum fingerprints of the underlying classi
dynamics of generic chaotic systems. In the last decade m
studies of such kind were dedicated to spectral properties@1#.
It is now established that, in general, systems with a class
chaotic dynamics are characterized by universal spec
fluctuations, which is the so-called Bohigas conjecture@2#.
Much insight about this phenomenon was provided by
semiclassical approximation@3#. Specifically, it was shown
that in the semiclassical regime@4–6# the energy level den
sity autocorrelation function of a chaotic system, evaluate
energy separations encompassing several mean level
ings, displays similar statistical properties as those aris
from ensembles of random matrices@7#. Starting from the
random matrix side, advances in proving the connection
the spectral fluctuations of chaotic systems were a
achieved@8,9#. Although a full proof of Bohigas’s conjectur
is not yet available, its domain of validity is fairly estab
lished.

Complementary to the universal view there is another s
cessful contribution of the semiclassical approach to the
search in quantum chaos. To every spectrum correspon
to a Hamiltonian system there are always deviations from
universal behavior, i.e., system specific features. For lo
dimensional chaotic systems the later are usually nicely
plained by identifying the system shortest classical perio
trajectories. For instance, knowing the actions and the sta
ity of all periodic orbits up to a timeT of a given chaotic
system, the semiclassical approximation explains sys
specific spectral correlations within energy windowsDE
>h/T.

The search for an universal behavior in chaotic wa
functions is more elusive. In this case, one faces a diffe
interplay between the quantum and classical scales wher
system specific features become important. Actually, the
vestigation of nonuniversal signatures of the classical un
lying dynamics in wave functions, such as scars@10#, is a
most fascinating subject to which several theoretical stud
were devoted@11–15#. Whereas there are still several op
1063-651X/2002/65~3!/036201~13!/$20.00 65 0362
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questions to be answered, one can naively say that it is
sible to separate a ‘‘short’’ universal time from a ‘‘long
system specific time regime in the description of chao
wave functions. This is, in a broad sense, the subject of
present paper.

The simplest statistical measure for chaotic wave fu
tions fluctuations is the two-point correlation functio
C(q1,q2)5^cn(q1)cn

1(q2)&q , where ^¯&q stands for a
local average in configuration space andcn(q) is the wave
function of thenth energy eigenstate of a given Hamiltonia
To the best of our knowledge this autocorrelation functi
was first discussed by Berry@16#, although admittedly very
similar ideas about the characterization of chaotic wave fu
tion were already known@17,18#. Berry assumed a microca
nonical probability density in the classical phase space
chaotic quantum states and obtained a simple analytical
pression forC(q1,q2). In line with the statistical approach
C was also reobtained by means of supersymmetric te
niques in weakly disordered systems@19,20#, and also by
standard statistical methods@26#. The later were able to
quantify the fluctuations ofC around Berry’s result for the
mean. The correlation functionC was also numerically veri-
fied by eigenfunctions studies of different dynamical syste
@21–23# and experimentally observed in eigenmodes of re
nating microwave cavities@24,25#. In all such studies the
agreement was always very good for spatial separations u
a few wave lengths, i.e., ‘‘short’’ distances. By correctingC
for contributions of classical trajectories for large separatio
uq12q2u, a recent study due to Hortikar and Srednicki@27#
improved Berry’s formula forC(q1,q2).

As a further motivation we add that the understanding
wave function correlations has some interesting direct ap
cation as, for instance, in the description of the conducta
fluctuations of quantum dots in the Coulomb blockade
gime@28–32#. With this background in mind, we take a fres
look into the question of eigenstates autocorrelations us
the Wigner-Weyl formalism. By doing this we derive a ge
eral expression for wave function spatial correlations ke
ing the semiclassical approximation under strict control.
recover as limiting cases Berry’s correlation function@16# as
well as the aforementioned Hortikar and Srednicki res
©2002 The American Physical Society01-1
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@27#. We furthermore discuss the important role played
different kinds of averaging procedures and open a path
the inclusion of scar contributions. To make the proble
tractable, we start introducing an energy smoothing, thus
fining an averageC. In a sense, this implies that our finding
give an improved mean of the autocorrelation functionC, in
distinction to the treatment of fluctuations presented in@26#.

The structure of the paper is as follows. In Sec. II w
introduce the spectral Wigner functionW, the object on
which this study is built due to its simple relation to th
autocorrelation functionC(q1,q2). There we also discus
aspects of the semiclassical approximation forW, which are
essential to understand the different limiting results
C(q1,q2). Section III contains the main findings of th
study. We show that the semiclassical approximation forC is
easier to obtain starting from a phase space representatio
particular for smooth potentials. We derive expressions
C(q1,q2) depending on the averaging procedure for ess
tially any given spatial separationuq12q2u. In Sec. IV we
relate our findings with previous analytical and numeri
results discussing their validity range. We also include th
appendixes. In Appendix A we show the equivalence
tween our expression forC with the one derived in Ref.@27#
in a certain limiting regime. Appendixes B and C are tech
cal and devoted to the demonstration of some specific
mula appearing in the main text.

II. THE SPECTRAL WIGNER FUNCTION
AND ITS SEMICLASSICAL APPROXIMATION

The Wigner function@33# of an individual energy eigen
stateun& is defined by the Weyl transformation

Wn~x!5E djq

~2p\!d cn~q1!cn* ~q2!expS 2
i

\
jq•pD , ~1!

where the coordinatejq5q12q2, x5(q,p) is a shorthand
notation for the phase space point withq5(q11q2)/2 andd
stands for the number of degrees of freedom of the syst
From Eq. ~1! it follows immediately that, upon averagin
over the coordinate space^¯&q , the inverse Weyl transfor
mation of Wn(x) gives the two-point autocorrelation func
tion

C~q1,q2![^cn~q1!cn* ~q21!&q

5E dpK WnS q11q2

2
,pD L

q

expF i

\
p•~q12q2!G .

~2!

Note that our definition ofC is not normalized by a facto
^ucn(r )u2&q

21 as standard.
The essence of Berry’s pioneering work@16# was to as-

sume that the averaged Wigner function of a generic cha
quantum stateun& of an autonomous system is distributed
a Dirac d function over the surface of energyEn , i.e.,
^Wn(x)&q}d„H(x)2En…, whereH(x) is the system Hamil-
tonian. For a Hamiltonian of the form
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H~x!5p2/2m1V~q!, ~3!

this so-called microcanonical probability density in
d-dimensional configuration space leads to the well-kno
formula @16#

C~q1,q2!}
Jd/221„p~q!uq12q2u/\…
@p~q!uq12q2u/\#d/221 , ~4!

wherep(q)5A2m@E2V(q)#, q5(q11q2)/2, andJn(x) is
the Bessel function of ordern. ~The formula encountered in
Ref. @16# differs from Eq.~4! by a constant due to norma
ization.! Since the above relation does not depend on
system specific features, scaling only with the local mom
tum p(q), it directly reveals an universal behavior of chao
wave functions. More recently, Prigodin and coworkers@19#
microscopically obtained the same result for disordered s
tems using the nonlinears model, in a regime resembling t
quantum chaotic systems. Impressive numerical tests of
~4! were presented, for instance, in Refs.@22,23#, reporting
on the study of wave functions corresponding to high lyi
energy levels of the two-dimensional (d52) conformal bil-
liard.

In spite of the success of Eq.~4!, one proviso ought to be
made. Both analytical and numerical results only corrobor
Berry’s conjecture if one regards the average^¯&q in a
broader sense. The nonlinears model approach average
over an ensemble of different impurities configurations.
addition to the average overq5(q11q2)/2 covering re-
gions encompassing several de Broglie wavelengths, the
cal averageŝ¯&q in Ref. @22# had to be taken over al
directions of (q12q2) for a fixed value ofuq12q2u to
verify Eq. ~4!.

Some time ago Berry@12,34# formulated a more rigorous
approach to this subject, which was recently further dev
oped by Ozorio de Almeida@35#. It has been shown tha
Berry’s original conjecture of microcanonical probabili
concentration@16# is semiclassically verified if the averag
runs over Wigner functions of states belonging to an ene
window containing several levels@12,34,35#. This construc-
tion is best casted in terms of the spectral Wigner functi
namely,

W~x,E;«![~2p\!d(
n

d«~E2En!Wn~x!, ~5!

where the$En% are the system eigenenergies. The ene
smoothing functiond« is for convenience chosen as

d«~E2En!5
«/p

~E2En!21«2 , ~6!

in correspondence to an energy window of width« centered
at E. Likewise, we introduce the smoothed eigenstate au
correlation function

C«~q1,q2,E!5D(
n

d«~E2En!cn~q1!cn* ~q2!, ~7!
1-2
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SEMICLASSICAL SPATIAL CORRELATIONS IN . . . PHYSICAL REVIEW E65 036201
whereD is the mean level density at energyE, defined as
D[^Snd«(E2En)&«

21, with the average taken over the e
ergy levels contained by the energy window« centered atE.
~When using the semiclassical approximation, for the sak
consistency,D is obtained from the Weyl energy level de
sity, i.e.,D[1/rW.! As follows from Eq.~1!, the inverse of
Wn directly givescn(q1)cn* (q2) rendering

C«~q1,q2,E!5DE dp

~2p\!d WS q11q2

2
,p,E;« D

3expF i

\
p•~q12q2!G . ~8!

The advantage of usingW is that it provides ways for ame
nable semiclassical approximations in different ene
smoothing regimes, allowing for the analysis ofC« at any
given spatial scale separation. Equation~8! is the starting
point of all results derived in this paper. The remaining p
of this section is devoted to the presentation of the limit
approximations toW based on the semiclassical picture
chord and centers, postponing to the forthcoming section
corresponding analysis ofC«(q1,q2,E).

A. The semiclassical spectral Wigner function

The spectral Wigner function is related to the Weyl prop
gator Ut(x), i.e., the Weyl transform of the propagat

^q1uexp(2itĤ/\)uq2&, through@12,35#

W~x,E;«!5
1

p\
ReE

0

`

dt e2«t/\Ut~x!expS i

\
EtD . ~9!

The semiclassical approximation ofW is directly obtained by
inserting in the above equation the semiclassical expres
for the Weyl propagator@35#, namely,

Ut
sc~x!5(

j

2d

udet@11Mj~x,t !#u1/2expF i
Sj~x,t !

\
1 ib j G .

~10!

Here the sum is taken over all classical trajectories with
same traversal timet whose phase space end pointsxj

6 are
joined by a chordjj (x)5xj

12xj
2 centered atx. Figure 1

illustrates the phase space structure beneath the semicla
Weyl propagator. The Maslov phase associated with thej th
classical trajectory is given byb j . In Eq. ~10!, 1 is the iden-
tity and Mj is the symplectic matrix~or stability matrix!.
The latter corresponds to the mapdxj

15Mjdxj
2 , resulting

from the linearization of the dynamics in the neighborho
of xj

6 . The symbolSj (x,t) stands for the action, also calle
center action@35#, given by

Sj~x,t !5 R
i
dq•p2E dt HW@xj~ t !#, ~11!

whereHW is the Weyl Hamiltonian, i.e., the Weyl symbol o
the Hamiltonian operator. It is worth recalling that the We
Hamiltonian HW(x) only coincides with the classical on
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HW(x), when the latter is of the form given by Eq.~3!. The
first integral at the right-hand side rhs of Eq.~11! is the
symplectic area enclosed by the circuit taken along thej th
trajectory connectingxj

2 to xj
1 and closed by the chord

2jj (x) ~see Fig. 1!. For autonomous systems the seco
integral is simply the product of the energyEj corresponding
to the j th trajectory, with its traversal timet j . The variation
of Sj with respect to the independent variables@35# leads to

jj q52] j /]p, jjp5]Sj /]q, and 2Ej5]Sj /]t.
~12!

At sufficiently short times for each phase space pointx there
is only one small chord contributing to the sum in Eq.~10!.
The short trajectory connecting the chord end points ha
Maslov phaseb050. In distinction, ast is increased, due to
bifurcations there is a proliferation of different chords to
summed in Eq.~10!.

The starting point for the semiclassical analysis ofW is
encountered by replacing Eq.~10! into Eq. ~9!

W~x,E;«!5
2d11

2p\
Re(

j
E

0

`

dt
e2«t/\

udet@11Mj~x,t !#u1/2

3expH i

\
@Sj~x,t !1Et#1 ib j J . ~13!

This formula exemplifies the general structure of the se
classical Weyl representation of any quantum object as be
given in terms of its classical chord structure in phase spa
In general, this fact is revealed by the use of the station
phase approximation to obtain the dominant contributions
any observable. This premise will guide our analysis ofC« in
the following section. In the following, we show how th
stationary phase method works in the case of the spe
Wigner function given by Eq.~13!.

The points of stationary phase are the solutions of

FIG. 1. Chord structure of the semiclassical Weyl propaga
Eq. ~10!, and of the spectral Wigner function Eq.~13! in a 2d-
dimensional phase space. For a central pointx we show typical
chords with their tips connected by classical trajectories on differ
energy shells but with the same traversal timet. The dashed line
indicates the locus, on a given energy shellE, of all the tips of
chords centered atx. The classical trajectories connecting the
types of chords are the semiclassical contributions toW. The dashed
area represents the symplectic area corresponding to the a
S2(x,E) ~see text!.
1-3
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d

dt
@Sj~x,t !1Et#50. ~14!

This equation fixes the traveling time along thej th trajectory
t j (E) at the energyE, for which

Sj~x,t j !1Etj~E!5Sj~x,E!, ~15!

where the actionSj (x,E) is the symplectic area correspon
ing to the first integral at the rhs of Eq.~11!, with the mo-
mentumupu fixed by the energyE. In other words, the sta
tionary phase condition selects those trajectory segments
belong to a single energy shellC. Thus, for such trajectories
all the chords centered atx have their tips onC. If all the
stationary pointst j (E) are isolated, which is generally th
case when the chords centered atx are sufficiently separated
we can evaluateW by stationary phase@35#, that yields

W~x,E;«!5
2d11

A2p\
(

j
e2«t j /\Aj~x,E!cosFSj~x,E!

\
1g j G ,

~16!

where the amplitude is explicitly written as

Aj~x,E!5Udtj

dE
det$11Mj„x,t j~E!…%21U1/2

, ~17!

and we collected the Maslov phases of the classical co
butions ing j . If the energy shellC is closed and convex an
x lies inside it there will be always contributing chords to E
~16!. To keep the presentation simple we shall only consi
convex energy shells in this paper.

B. The role of the energy average

The smoothing« parameter plays an essential role
regulating the convergence of the semiclassical approxi
tion for the spectral Wigner functionW: as « becomes
smaller, longer classical paths start contributing relevantly
the sum in Eq.~16!. It is customary to define two characte
istic semiclassical scales for« @12,34#. The first one is the
outer scale« large[\/tmin , where tmin is the period of the
shortest periodic orbit, characterizing the typical time to flo
around the energy shell. The second one is the inner s
«small[\/tH , wheretH is the Heisenberg time defined by th
mean level spacingD in the considered energy window a
tH5\/D.

Particularly strong contributions toW arise whenx is
taken in the neighborhood of caustics. At such singu
points the standard stationary phase approximation is bo
to fail. When the evaluating pointx approaches a caustic o
the integrand in Eq.~13!, generically two or more stationar
phase pointst j (E) coalesce and so do the correspond
chordsjj (x). Therefore, we shall also often speak of co
lescing chords at caustics. The most important kind of ca
tics influencingC« will be those at the energy shell itself an
the ones near periodic orbits onC. As we will show, the first
ones are associated with short times, whereas the other
associated with the long time dynamics. Correspondingly
distinguish two energy averaging regimes inW for pointsx
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near the energy shell:~a! «@« large when the signatures of al
the long trajectories are suppressed and~b! the opposite situ-
ation when «,« large and more trajectories do contribute
Here, to keep the approximation under control,«@«small is
required.

Let us first consider the case when«@« large. Here, only
one short classical trajectory, with traversal timet0 fixed by
the stationary phase condition, contributes toW @35#. The
shorter chord in Fig. 1 serves to illustrate this situation.
x→C, t0 approaches the lower integration limit in Eq.~13!
spoiling the stationary phase approximation. This difficu
can be circumvented in the following way. Since the acti
S(x,t) is always an odd function oft and by changing the
cutoff function, exp(2«t/\), for an even one with respect t
t, we write Eq.~13! as

W~x,E;«!.
2d

2p\ E
2`

`

dt
e2«utu/\

udet@11M0~x,t !#u1/2

3expH i

\
@S0~x,t !1Et#J . ~18!

The resulting integrand displays two stationary phase po
located at6t0 that coalesce att50 asx approachesC. The
structure of coalescing stationary points at the origin can
obtained by expanding the center action up to third orde
t @35#

S~x,t !'2tHW~x!2 1
24 t3ẋHẋ, ~19!

whereẋ is the phase space velocity andH the Hessian matrix
of the Weyl Hamiltonian, both taken at the phase space p
x. The integral in Eq.~18! can now be evaluated by th
uniform approximation method@36# by invoking a suitable
change of the integration variable. Such transformationz
[z(t), is the one that reduces the integrand phase in
~18! to the canonical formz3/32g2z ~see, for instance, Ref
@37#!. Mapping the stationary points6t0 into the new ones
in z, yields tog52@3S(x,E)/2#1/3. Thus, we obtain

W~x,E;«!5
2d11

A2\
e2«ut0u/\A0~x,E!F3S0~x,E!

2\ G1/6

3Ai X2S 3S0~x,E!

2\ D 2/3C, ~20!

where Ai(y) is the Airy function@38#. This result corrects for
a small mistake in Eq.~7.20! of Ref. @35#. It also contains the
relation previously discussed forx taken deep inside the en
ergy shell. As the evaluation pointx recedes fromC, the Airy
function argument~in modulus! grows very fast. Hence, we
are entitled to employ the Airy function approximation fo
large negative arguments and retrieve Eq.~16!, provided that
for the short trajectoryg050.

As x further approaches the energy shellC, the spectral
Wigner function becomes very simple~provided«@« large!.
In such situation there is an apparent indeterminacy in
amplitude of Eq.~20! since the symplectic areaS(x,E) van-
ishes and the amplitudeA0(x,E) diverges. In this case it is
1-4
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an accurate approximation to represent the short trajec
by the short chordj0't0ẋ, and hence the stability matri
M0 becomes the identity. Thus

S0~x,E!. 1
12 t0

3ẋH0ẋ5 4
3&

@E2HW~x!#3/2

~ ẋH0ẋ!1/2 , ~21!

and

Udt0
dEU

1/2

5S t0

2 UẋHẋU D 21/2

. ~22!

Hence, as it was already shown@39,35#

W~x,E;«! ——→
x→C

2

u\2ẋH0ẋu1/3Ai S 2@HW~x!2E#

~\2ẋH0ẋ!1/3 D .

~23!

In this situation,x→C and«@« large, for the strict semiclas-
sical regime we easily recover the microcanonical proba
ity distribution

W~x,E;«!'d„HW~x!2E…, ~24!

by recalling that lima→0 a21Ai( y/a)5d(y). This result
does not come as a surprise, it is just telling us that
washed out most quantum interference effects reaching
classical limit while taking«@« large. It is only by narrowing
« that one can explore the rich structure of the spec
Wigner function and unveil nontrivial quantum features. Th
discussion shall be resumed in a deeper level in the foll
ing section, but we can already anticipate that Eq.~24! is
remarkably robust.

Let us discuss now the case where«,« largeandx is taken
close to the energy shellC. Here, one also has to account f
pairs of coalescing chords in Eq.~13!, schematically shown
in Fig. 2. These are the short chords corresponding to l
trajectories orbiting between its tips and winding ve
closely to a periodic orbit. Whenx→C their traversal times
and actions,S(x,E), become degenerate with those of t
corresponding periodic orbit. Thus, Eq.~20! has to be cor-
rected by adding the so-called scar contributions to the s
tral Wigner function, first developed by Berry@12# and latter
refined by Ozorio de Almeida@35#. The latter formula de-
scribes the Wigner scars as a peak of extra intensity along
periodic orbits on the energy shell decorated with a frin
pattern. As it was shown in Ref.@15# such Wigner scars
extend deep inside the energy shell where the spe
Wigner function is semiclassically given by Eq.~16! for any
arbitrary value of«. Indeed, when the action of a period
orbit is Bohr quantized the contributions of trajectory se
ments for chords whose tips lie on the periodic orbit, can
added in phase to Eq.~16!. Hence the Wigner scars have a
enhanced pattern of concentric rings of oscillatory amplitu
on a two-dimensional surface defined by the centers of
the chords with end point on the periodic orbit@15#. Only the
edge of this surface corresponds to the domain of the Ber
scars formula. This shows that the semiclassical spec
Wigner function is in general not restricted to the ener
shell, and thus to short chord contributions. In other wor
we say that the old microcanonical conjecture of Voros a
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Berry @18,16#, has important semiclassical corrections. T
distinction between contributions of the large and sh
chords will appear again in the study of the spectral autoc
relation functionC« in the following section.

III. CORRELATIONS OF ERGODIC WAVE FUNCTIONS
FOR DIFFERENT ENERGY AVERAGING REGIMES

In this section we derive a general semiclassical form
for C«(q1,q2,E) expressed in terms of the system classi
chord structure. Our analysis is build on the semiclass
approximations for the spectral Wigner functionW presented
in the foregoing section.

For any given pair of points in position space,q1 andq2,
the integral in Eq. ~8! is performed over the entire
d-dimensional momentum space. In this study we only c
sider q1 and q2 within classically allowed regions. Hence
the integration momentum space intercepts the energy s
and is naturally divided into a domain located in the inter
of C and another at its exterior. This is illustrated in Fig.
For convex energy surfaces, the ones considered here
spectral Wigner function, whose argument isq5(q1

1q2)/2, exponentially vanishes for values ofp in the phase
space region exterior toC. Hence, in general, the main con
tribution to the integral in Eq.~8! arises from momenta in the
interior ofC and at its immediate neighborhood. Thus, we a
allowed to bound the effective momentum integration sp
in Eq. ~8! to the classically allowed momenta. We name t
so defined integration space the ‘‘momentum space ass
ated toq5(q11q2)/2.’’

In line with Sec. II, first we find the general chord stru
ture thatC« inherits fromW. This is done by inserting into
Eq. ~8! the semiclassical expression for the spectral Wig

FIG. 2. Illustration of a composition of trajectory segments th
closely follow a periodic orbit. Berry’s scar formula singles out t
trajectories connecting the tips of the two depicted chords that
come indistinguishable from the period orbit asx approachesC.
1-5
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FIG. 3. Chord structure of the semiclassic
approximation for the spectral autocorrelatio
function C« . The horizontal dashed lines repre
sent the projection on configuration space of t
chordsjq matching the vectors6(q12q2). The
points of stationary phase are located on t
d-dimensional associated momentum space toq
5(q11q2)/2 and indicated by asterisks~* ! and
dots ~d! ~see text for details!. C stands for the
(2d21)-dimensional surface of constant ener
E whereas the axis q and p represent
d-dimensional surfaces. The semiclassical con
butions toC« are given by all trajectories onC
flowing between the tips of chordsjq . Panel~a!
illustrates a typical time reversal symmetric cas
while ~b! a case when this symmetry is absent
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function given by Eq.~16!, which is valid for any arbitrary«.
The resulting integral can be casted as

C«~q1,q2,E!5D(
j

e2«t j /\

~2p\!d11/2@ I j
1~q1,q2,E!eig j

1I j
2~q1,q2,E!e2 ig j #, ~25!

with

I j
652dE dpAj~x,E!expH i

\
@Sj~x,E!6p•~q12q2!#J .

~26!

Now we evaluateI j
6 by stationary phase. The stationa

phase pointspj[pj (q
1,q2,E) are solutions of

]

]p FSj S q11q2

2
,p,ED G56~q12q2! ~27!

for I j
6 . We recall that the variation ofSj (x,E) with respect

to the independent variablesq and p are given in Eq.~12!.
Hence, the first member of Eq.~27! is exactly 2jj q
52(qj

12qj
2). In other words, the stationary phase con

tion selects those classicalj trajectories in the energy she
whose projected chords in the configuration space match
vectors6(q12q2). This geometrical structure is sketche
in Fig. 3, where the projected chords are indicated by das
vectors. In the same figure, the classicalj trajectories are
those flowing between the intersections of the momen
spaces corresponding toq5q2 and q5q1 with the energy
surfaceC. The panel~a! of Fig. 3 corresponds to time reve
sal symmetric flows, whereas~b! represents the cases whe
this symmetry is absent. The locations of the many poss
stationary phase pointspj in the momentum space associat
to q5(q11q2)/2 are indicated by dots and asterisks. Wh
for q2→q1 the chords centered at ‘‘asterisks’’ coalesce to
zero length chord at the energy shellC, the ones centered a
‘‘dots’’ are typically large. This allow us to name the chord
centered at ‘‘asterisks’’ as ‘‘short’’ chords and the ones c
tered at ‘‘dots’’ as ‘‘long’’ chords.
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Provided that the stationary pointspj are sufficiently far
apart from each other, we can safely evaluateI j

1 and I j
2 by

the stationary phase method. The latter requires a sym
trized Legendre transformation in the phases of Eq.~26!,
which is conveniently expressed by the standard textb
action S @35#, with variables in the configuration spac
namely,

Sj~q6,q7,E!5Sj~xj ,E!6pj•~q62q7!, ~28!

where xj5(q,pj ) with q5(q11q2)/2 and pj
[pj (q

1,q2,E). We obtain for the nonoscillatory factor o
both I j

1 and I j
2

2dAj~xj ,E!UdetS ]2Sj~x,E!

]p2 D U21/2U
x5xj

5uD j u1/2, ~29!

where

D~q1,q2,E![~21!d detS ]2S

]q2]q1

]2S

]q2]E

]2S

]q1]E

]2S

]E2

D .

~30!

The details of the derivation leading to Eq.~29! can be found
in Appendix A.

For time-reversal invariant systems, to everyj trajectory
on C going fromq2 to q1 ~solution of the integralI j

1! there
is a corresponding time reversed pair going fromq1 to q2

~solution of the integralI j
2!. Evidently both terms contribute

with the same stationary phase and amplitude to the sum
Eq. ~25!. Hence

C«~q1,q2,E!'
2D

~2p\!~d11!/2 (
j

e2«t j /\uD j~q1,q2,E!u1/2

3cosFSj~q1,q2,E!

\
1g j1n j

p

4 G , ~31!
1-6
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wheren j[sgn@]2Sj(x,E)/]p2#. This is essentially the main
finding of Ref.@27#.

Let us now discuss the conditions under which Eq.~31!
fails. Whenq2 approachesq1, the pointsxj , represented by
asterisks in Fig. 3, move closer to the energy shell. As
learned in Sec. II this is a case where the semiclassical
proximation for the spectral Wigner function, from whic
Eq. ~31! was obtained, fails. Remarkably, even in this lim
whereq2→q1 there are ‘‘long’’ chords whose center poin
xj , indicated by dots in Fig. 3, are typically far fromC. Such
contributions toC« are still well described by Eq.~31!, but
are obviously unrelated to the ‘‘short’’ chords. The appro
mation scheme forW developed in the preceding section
deal with the classical contributions due to the ‘‘sho
chords centered at pointsxj close toC, can be also used to
obtain C« . In the remainder of this section we pursue th
path for two very different energy smoothing regimes a
obtain a semiclassical approximation ofC« valid for any
spatial separation scale within the classical allowed regio

At this point an important remark is in order. The cho
structure for a fixed distanceuq12q2u sketched in Fig. 3 is
robust upon changes ofq5(q11q2)/2 unless one of the
pointsq6 reaches the boundary of the classical allowed
gion. When this condition is met, the ‘‘short’’ chords co
lesce with the ‘‘long’’ ones, corresponding in Eq.~25! to the
case of coalescing stationary points. A semiclassical inve
gation for a similar situation has already been reported@39#,
but it did not address wave function correlations. This is
most interesting physical situation owing to its relation
tunneling rates and possible implications to the already m
tioned Coulomb blockade systems@28–32#. Unfortunately
we were not able to develop a semiclassical approximatio
this problem yet. We avoid it in this paper by restricting o
analysis to pointsq6 inside the classical allowed region an
distant from its boundary by a couple of de Broglie wav
lengths.

A. Large «š« large smoothing regime

For «@« large the cutoff parameter« suppresses all but th
shortest trajectory contribution to Eq.~31!. The latter con-
nects both tips of a ‘‘short’’ chordj0 ~see Fig. 3!. As dis-
cussed before, when the centerx0 of j0 approaches the en
ergy shellC, we have to employ the corresponding unifor
approximation toW, given by Eq.~20!.

Instead of directly Fourier transforming the semiclassi
spectral Wigner function, it is advantageous to step back,
W as given by Eq.~18!, and invert the integration order. Tha
is

C«~q1,q2,E!.
D

2p\ E
2`

`

dt e2«utu/\F0~q1,q2,t !

3expS iEt

\ D , ~32!

where
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F0~q1,q2,t ![
2d

~2p\!d E dp
1

udet@11M0~x,t !#u1/2

3expH i

\
@S0~x,t !1p•~q12q2!#J .

~33!

The above integral is evaluated by the stationary ph
method. The stationary phase pointp0[p0(q1,q2,t) is the
solution of

2j0q[
]

]p FS0S q11q2

2
,p,t D G52~q12q2!. ~34!

In analogy to the case that leads to Eq.~28!, the phase factor
is best written in terms of the standard textbook actionR,
with variables in the configuration space, namely,

R0~q1,q2,t !5S0~x0 ,t !1p0•~q12q2!. ~35!

Substituting the obtained stationary phase approximation
F0 into Eq. ~32! we write C« as

C«~q1,q2,E!.
D

~2p\!d/211 E
2`

`

dt g~ t !

3expF i

\
F~ t,u!1 in0~ t !

p

4 G , ~36!

where n0(t)[sgn@]2S0(x,t)/]p2#. The functiong(t) gives
the amplitude

g~ t !52de2«utu/\Udet@11M0~x,t !#detS ]2S0~x,t !

]p2 D U21/2U
x5x0

,

~37!

with x05(q,p0), q5(q11q2)/2, and p0[p0(q1,q2,t).
The phaseF stands for

F~ t,u!5R0~q1,q2,t !1Et, ~38!

where we introducedu}uq12q2u as a control parameter o
the integral, i.e.,x0→C whenu→0.

The integral in Eq.~36! is dominated by the stationar
phase points located at6t0(u,E) corresponding to the tra
versal time of the shortest trajectory going fromq2 to q1

and the one running backwards in time. Asu→0, 6t0(u,E)
coalesce at the origin. This situation again is very similar
the one encountered in the preceding section when dea
with the spectral Wigner function forx near the energy shel
@i.e., the one that leads to Eq.~20!#. The difference is in the
functional form of the phaseF and on the behavior ofg(t)
near the origin. For a Hamiltonian of the form Eq.~3! we
show in Appendix B that both the phaseF and the amplitude
g(t) have a singularity at the origin. Notwithstanding, th
integral in Eq.~36! is finite and can be evaluated using th
uniform approximation method@37#. The result is
1-7
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C«~q1,q2,E!5
2pD

~2p\!~d/2!11 @ uD0~q1,q2,E!u

3S0~q1,q,E!#1/2Jd/221S S0~q1,q2,E!

\ D ,

~39!

where we left out the smoothing factore2«ut0u/\, since for
practical purposes the conditiont0!\/« is always met. De-
tails about the evaluation of the integral in Eq.~36! leading
to Eq.~39! are found in Appendix B, where we explicitly us
H in the form given by Eq.~3!.

The above semiclassical approximation forC«(q1,q2,E)
is valid for any separationuq12q2u, provided the argument
belong to the classical allowed region. Let us examine
small and large separation limits. Asq2→q1 the shortest
trajectory onC is well approximated by the ‘‘short’’ chord
j0 , and the actionS0 turns into

S0~q1,q2,E!'p0~q!uq12q2u, ~40!

wherep0(q)5A2m@E2V(q)#. Hence, the determinantD0
simplifies to

uD0~q1,q2,E!u1/2'm
p0~q!~d23!/2

uq12q2u~d21!/2 . ~41!

@The derivation of Eqs.~40! and ~41! is found in Appendix
C.# Collecting the results, we write

C~q1,q2!5
~2p!d/2mp~q!d22

~2p\!drw~E!

Jd/221„p~q!uq12q2u/\…
@p~q!uq12q2u/\#d/221

~42!

and recover, by an appropriate normalization, Berry’s or
nal result Eq.~4!. In the corresponding opposite limit, whe
uq12q2u is large, we use the asymptotic expansion of
Bessel function for large arguments, namely,Jn(x)
'A2/(px)cos(x2np/22p/4) and retrieve the semiclassic
approximation given by Eq.~31! for the shortest trajectory.

B. Small «Ë« large smoothing regime

As the smoothing parameter« is shrinked, longer trajec
tories have to be taken into account. As a consequence, w
«,« large, the approximation scheme becomes subtler t
the simplified one discussed in Sec. III A. Before explori
this regime, it is useful to remind ourselves that the semic
sical contributions to the spectral Wigner function come fro
orbits connecting the tips of either ‘‘short’’ or ‘‘long’’ chords
as depicted in Fig. 3. We thus classify the classical traje
ries into three categories.
~a! Trajectories connecting tips of ‘‘long’’ chords. We alread
discussed this case at the beginning of Sec. III. Here, s
the trajectories are isolated, we just use Eq.~31!. Difficulties,
if any, arise from the large number of trajectories entering
sum, as regulated by the«.
~b! Short trajectories connecting ‘‘short chords.’’ These we
analyzed in Sec. III A.
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~c! Long trajectories connecting ‘‘short chords.’’ The analys
of C«(q1,q2,E) becomes much clearer in the two cas
namely,x close and far from the energy surfaceC, discussed
in the following.

When the long trajectories have tips on ‘‘short’’ chord
and q2 approachesq1, the centersxj of these chords ap
proachC. Here in addition to the trajectories of type~a! and
~b!, we have to account for the long trajectories associa
with ‘‘short’’ chords of the type~c! but whose centers ar
close toC. Hence, as already discussed, for evaluating po
close to the energy shell we must use a suitableW for Eq.
~8!. This is just Berry’s scar expansion formula in term
of periodic orbits @12,34,35#. Hence, for small distance
uq12q2u, we write

C«~q1,q2,E!5 (
j P ‘ ‘ long’’

chords

C«
j ~q1,q2,E!1C«

0~q1,q2,E!

1C«
scar~q1,q2,E!, ~43!

whereC«
j stands for thej th type~a! orbit corresponding to a

term in the sum in Eq.~31!, C«
0 for the type~b! trajectory

term given by Eq.~39!, andC«
scar is the result of Eq.~8! for

W taken as the scar expansion formula. We do not intend
present here any detailed analysis of this integration, but
easy to realize that the final result will be an expansion
terms of all the periodic orbits that pass through the poi
q6. Such conjecture is further supported by noting that wh
q25q15q the integration Eq.~8! reduces to the projection
‘‘down’’ p of the Berry’s scar expansion. The latter ca
corresponds to Bogomolny formula@11# for scars in the
probability density in configuration space, which involves
the periodic orbits that pass through the pointq ~see Ref.
@34#!.

In the other limit, whenuq12q2u is large, the centersxj
of all the chords sketched in Fig. 3 are far fromC, and we
thus write

C«~q1,q2,E!5(
j Þ0

C«
j ~q1;q2,E!1C«

0~q1,q2,E!,

~44!

where we separate the contributionC«
0 of the shortest trajec-

tory given by the uniform expression~39!.
It is interesting to note that both formulas~43! and ~44!

imply that the spectral autocorrelation function has contrib
tions arising fromW taken at pointsxj well inside the energy
shell. In the case of Eq.~43! these are the trajectories wit
tips on ‘‘long’’ chords. In general, these contributions cann
be neglected, as already discussed at the end of Sec. II.
ticularly, the ‘‘off-shell’’ scars of the spectral Wigner func
tion @15# provide the only periodic orbit contributions forC«

in the case of large separationuq12q2u.

C. Spatial averaging with «Ë« large

We now investigate the effect of spatial averaging on
spectral autocorrelation function. We are interested to kn
under which circumstances this averaging washes out
1-8
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SEMICLASSICAL SPATIAL CORRELATIONS IN . . . PHYSICAL REVIEW E65 036201
system specific features, allowing one to define a local s
tem independent~or universal! regime forC« . Furthermore,
the additional spatial averaging brings our results into cl
relation to numerical experiments, such as the ones in R
@22,23#.

Defining the local spatial average as

^C«~q1,q2,E!&q[
1

A~V!
E

V
dqC«~q1,q2,E!, ~45!

whereV is a configuration space region of surfaceA(V) ~in
d dimension!, covering many ‘‘local’’ de Broglie wave-
lengthslq across. We definelq52p\/p(q) in terms of the
local momentump(q), consistent with the semiclassical a
proximation. The average is restricted to a regionV of clas-
sically small variations of the smooth potentialV(q).

The ubiquitous robustness of Berry’s expression for
autocorrelation of chaotic wave functions can be attributed
the following. At small separationsuq12q2u the local space
average kills the termsC«

j associated with the ‘‘long’’ chords
This suppression is due to the fact that such terms oscilla
a scale smaller~or at most comparable! to the de Broglie
wavelength. Indeed, for small separation the ‘‘long’’ chor
are almost parallel to the momentum space and thus its
ters havepj (q

1,q2,E)'0 ~see Fig. 3!. From Eq. ~28!,
Sj (q

1,q2,E)'Sj (xj ,E) and thus the local spatial wave
length in Eq.~31! is approximately

l j q'2p\U]Sj~xj ,E!

]q U21

5
2p\

ujj pu
, j Þ0. ~46!

This is just about the de Broglie wavelength sinceujj pu
;2p(q). Moreover, the requirement of small spatial avera
ing regions assures thatp(q) is approximately constant forq
inside V. Consequently,C«

0 for small uq12q2u coincides
with Berry’s result and remains unaffected by the local s
tial average@40#. Furthermore, if none of the wave function
inside the energy window from whichC« is built shows a
strong visual scar due to periodic orbits, which is often
case, there is no reason to expect a sizeable correction d
^C«

scar&q . Thus, after the averaging the leading contributi
for C« would be the local system independent expression
~4!.

Extrapolating our semiclassical analysis
^C«(q1,q2,E)&q to energy smoothings of the order of on
energy spacing~i.e., «;«small!, we find that our results are
still consistent with the numerical investigations@22,23# of
the autocorrelation functionC(q1,q2) @in this case Eq.~2!#
on individual eigenfunctions for small values ofuq12q2u.
For instance, in Ref.@23# we observe that the corrections
Eq. ~4! given by ^C«

scar&q are small unless the eigenfunctio
has a strong visual scar due to a simple periodic orbit. Li
wise, as Eq.~4! is symmetric with respect to the orientation
of (q12q2) for a fixed value ofuq12q2u, the observed
angular dependence ofC(q1,q2) @22,23# arrives precisely
from ^C«

scar&q .
Before concluding we would like to add that the loc

spatial average is the mechanism responsible for the el
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nation of the contributions of trajectories associated w
‘‘long’’ chords in the Bogomolny scar formula for the spati
probability density@11#. In our formalism, the latter is recov
ered after making the local average Eq.~45! over the auto-
correlation functionC« , Eq. ~43!, and then takingq1

→q2. In other words, the Bogomolny scar formula captur
~in configuration space! only the scar contributions of peri
odic orbits near the energy shell of the spectral Wigner fu
tion, since the ‘‘off-shell’’ scar contributions@15# are washed
out by the local spatial average.

IV. CONCLUSIONS

We investigated the spatial two-point autocorrelation
energy eigenfunctionscn(q) corresponding to classically
chaotic systems in the semiclassical regime. We use
Weyl-Wigner formalism to obtain the spectral avera
C«(q1,q2,E) of cn(q1)cn* (q2), defined as the averag
over eigenstates within an energy window« centered atE. In
the considered framework,C« is just the Fourier transform in
momentum space of the spectral Wigner functionW(x,E;«).

The advantage of this formalism comes from the obser
tion that W is almost like tailor made for semiclassical a
proximations. At each phase space point,x[(q,p), the semi-
classical behavior ofW is associated with all the classica
trajectories on the energy shellE whose end points are joine
by a chord centered atx. These classical contributions ar
exponentially suppressed when the trajectory traversal t
is t*\/«.

In distinction to most studies so far, this paper addres
smooth Hamiltonian systems. Actually, except for Eq.~31!
that is for a time reversal symmetric system and Eq.~39!
which holds forH(x) of the form Eq.~3!, all the formulas in
this work are valid for general smooth autonomous Hamil
nians @41#. Our results can evidently be straightforward
employed to calculateC« in billiard systems, where the
phase space structure is much simpler than the one con
ered here. For smooth systems, we show that it is still p
sible to distinguish inC« between a local system indepe
dent regime and another one that carries the system clas
chord structure information. This is obviously also valid f
billiards. The interplay between the spectral average wind
which controls the upper time scale of the classical contri
tions, and the spatial separation scale dictates which asp
prevails. As a result we obtain semiclassical expressions
bridge the existing formulas for the autocorrelation functi
C« .

To the best of our knowledge, the studies ofC« found in
the literature are based on Green’s function methods,
employ a given arbitrary separation between ‘‘zero-leng
and ‘‘long’’ trajectories. In billiards, due to their simplicity
the semiclassical ‘‘zero-length’’ Green’s function is an exc
lent approximation to calculateC« , even for« comparable
with « large, provided that the separation is not too large.
smooth systems corrections accounting for the energy
face curvature become rapidly necessary as the spatial s
ration is increased. Such corrections, albeit, in principle, f
sible to obtain with the Green’s function method, are eas
to estimate with the here employed framework. This is
1-9
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FABRICIO TOSCANO AND CAIO H. LEWENKOPF PHYSICAL REVIEW E65 036201
important advantage of the formalism we employ. Our stu
goes beyond that issue showing that the Wigner-Weyl
malism is a quite general framework for semiclassical
proximations, clearly revealing the inextricable relation b
tween the classical chord structure and the choatic w
function correlations.

Note added. Recently, another study of the energy avera
autocorrelation functionC«(q1,q2,E) has been published
@42#. The later improves Hortikar and Srednicki result@27#
by normalizingC« by the semiclassical local level densit
The three terms expression that they found arise from
normalization and bears no relation with our Eq.~43! since
our C« is not normalized. Obviously, Eq.~43! contains all
information of the normalizedC« .
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APPENDIX A: DEMONSTRATION OF EQ. „29…

In this appendix we show that both amplitudes in Eq.~29!
are identical, thus proving that Ref.@27# addresses one of th
limiting cases ofC« studied in this paper. For the sake
clarity, it is convenient to express both sides of Eq.~29! in
terms of the action defined asR(q1,q2,t)5S(q1,q2,E)
2Et. The variation ofR with respect to its independent var
ables, namely,q1, q2, andt gives @3#

p656]R/]q6 and 2E5]r /]t. ~A1!

It is also convenient to introduce a short notation for t
second derivatives ofR

R11[
]2R

]q12 5
]p1

]q1, R12[
]2R

]q1]q2 52
]p2

]q1,

R21[
]2R

]q2]q1 5
]p1

]q2, R22[
]2R

]q22 52
]p2

]q2 ,

~A2!

which form a set of fourd-dimensional matrices.
With the elements at hand, one readily writ

D(q1,q2,E), as defined in Eq. ~30! by a
(d11)3(d11)-dimensional matrix determinant~see, for
instance, Ref.@3#!

D5S ]2R

]t2 D 21

det~2R12!52S ]t

]EDdet~2R12!.

~A3!

We switch now to the lhs of Eq. ~29!. The
(2d32d)-dimensional stability matrixM(x) is related to
the second derivatives of the actionR as follows:
03620
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M~x!5S 2R12
21 R22 2R12

21

R212R11R12
21 R22 2R11R12

1 D . ~A4!

The justification for the above equation can be found in
Appendix A of Ref.@12#. It is now straightforward to show
that

det@11M~x!#5
det~R122R112R221R21!

det~2R12!
.

~A5!

It remains only to express]2S/]p2 as a function ofR to
conclude the demonstration. The relation between the sec
derivatives of the center actionS(q,p,E) and the stability
matrix M(x) can be obtained by differentiatingq1

[q1(q2,p2) andp1[p1(q2,p2) with respect toq andp.
By writing q25q2(q,p), p25p2(q,p), and recalling that
q65q7(]S/]p)/2 andp65p6(]S/]q)/2, we arrive at

@12JB~x!#5M~x!@11JB~x!#, ~A6!

where

B~x!5
1

2 S ]2S

]q2

]2S

]p]q

]2S

]q]p

]2S

]p2

D and J5S 0 1

21 0D .

~A7!

Using the obvious identityJ2152J we recastB(x) as

B~x!52J@12M~x!#@11M~x!#21. ~A8!

The above relation with the aid of Eq.~A4! renders

]2S

]p2 522d~R122R112R221R21!21. ~A9!

Finally, by collecting Eqs.~A3!, ~A5!, and~A9! we arrive
at

2S ]t

]ED H det@11M~x!#detS ]2S

]p2D J 21

52S ]t

]ED det~2R12!

22d

5
D

22d , ~A10!

which proves Eq.~29!.

APPENDIX B: DERIVATION OF THE UNIFORM
APPROXIMATION EQ. „39…

In this appendix we evaluate the integral Eq.~36! by the
uniform approximation method to obtain Eq.~39! for the
spectral autocorrelation function. As already mentioned,
integral in Eq. ~36! is dominated by its stationary phas
points6t0(u,E) ~solutions of]R0 /]t1E50), that coalesce
1-10
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at the origin asu→0. Thus, we start analyzing the structu
of the phaseF(t,u) and the amplitudeg(t) neart50.

For F(t,u) we replace the actionR0 by the one found in
Eq. ~35!. We then expand the center actionS0(x,t) @provid-
ing thatp0[p0(q1,q2,t) is fixed by the condition Eq.~34!#,
up to third order int, as in Eq.~19!. If the system Hamil-
tonian has the form of Eq.~3!, the expansion reads

S0~x,t !'2tH~x!2
1

24
t3S 1

mU]V

]qU
2

1
1

m2 p
]2V

]q2 pD ,

~B1!

so for Eq.~34! we have

2
]S0

]p U
x5x0

5
t

m
A~q,t !p05~q12q2!, ~B2!

where x05(q,p0), with q5(q11q2)/2 and A is the
(d3d)-dimensional matrix

A~q,t !511
t2

12m

]2V

]q2 ~q!. ~B3!

Solving Eq. ~B2! for p0 and using that A2151
2(t2/12m)]2V/]q21O(t4), we arrive at

p0~q1,q2,t !5
m

t
~q12q2!2

t

12

]2V

]q2 ~q!1O~ t3!,

~B4!

wherem(q12q2)/t comes from the first order term in thet
expansion of the center action Eq.~B1!. Equations~B1! and
~B4! yield

F~ t,u!5
m

2t
uq12q2u21@E2V~q!#t1F̃~ t,u!. ~B5!

Here the explicit part ofF arises from the lowest order i
Eq. ~B1! andF̃(t,u) is an analytical function oft. The phase
F(t,u) has a pole of order one at the origin of the comp
planet.

The behavior ofg(t), defined by Eq.~37!, near t50 is
dominated by

UdetS ]2S0~x,t !

]p2 D U21/2U
x5x0

'
md/2

utud/2 udet@A~q,t !#u21/2,

~B6!

as seen from Eq.~B2!. For clarity purposes we introduc
g̃(t) an analytical function of t, defined as g(t)
[g̃(t)/utud/2.

The center actionS0 andp0(q1,q2,t) are odd function of
t @35#, and consequently so is the phaseF(t,u). Sinceq(t)
is an even function oft, we are allowed to express Eq.~36!
by
03620
2D

~2p\!d/211 ReI ~\,u![
2D

~2p\!d/211 ReE
0

`

dt
g̃~ t !

td/2

3expF i

\
F~ t,u!2 id

p

4 G , ~B7!

where we used thatn0(t)[sgn@]2S0(x,t)/]p2#, which is the
difference between the number of the positive and nega
eigenvalues of]2S0(x,t)/]p2 and is simply equal to2td/utu
when the energy shell is convex~the case considered in thi
study!. We have now to deal with a single stationary pha
point t0(u,E), that coalesces with the lowest limit of th
integration, and for which the stationary phase reads

F~ t0 ,u!5R0~q1,q2,t0!1Et0[S0~q1,q2,E!. ~B8!

The uniform approximation@37# to Eq. ~B7! involves the
suitable change of the integration variable,w[w(t):@0,
1`)→@0,1`), such that it is invertible and reduces th
phase of the integrand to the canonical form

F~ t,u!5
1

2 S w1
z2~u!

w D[f~w,u!, ~B9!

adhering toF(t,u) as given by Eq.~B5!. Likewise, we must
require that the stationary points6t0 of F correspond to the
saddle points6w0[6z(u) of f @i.e., ]f/]wuw56w0

50 for

6w05w(6t0)#. This is achieved by makingz(u)
5S0(q1,q2,E) @see Eq.~B8!#. Thus, after the change o
variable the integral in Eq.~B7! becomes

I ~\,u!5E
0

`

dw
G̃~w!

wd/2 expF i

\
f~w,u!2 id

p

4 G , ~B10!

where

G̃~w!

uwud/2 5
g̃~ t !

utud/2U ]t

]wU, ~B11!

andG̃ is an even analytical function ofw. In general the next
step of the method of uniform approximation is to expandG̃
aroundw0 @37#, but in our case is sufficient to keep only th
first term, namely,

G̃~w!'G̃~w0!5g„t0[t~w0!…U ]t

]wUU
w5w0

uw0ud/2,

~B12!

where

U ]t

]wUU
w5w0

5
u]f/]wuuw5w0

u]F/]tuu t5t0

5
1

uS0~q1,q2,E!u1/2U]t0

]EU
1/2

.

~B13!

The last equality was obtained by applying the L’ Hospi
rule. Now, recalling Eq.~29! we write
1-11
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G̃~w0!5e2«ut0u/\@D0~q1,q2,E!#1/2S0~q1,q2,E!~d21!/2,
~B14!

and using an integral representation of the Hankel’s func
Hn

(1)(z) @38#, we have

I ~\,u!'
pG~w0!

S0~q1,q2,E!d/221 Hd/221
~1! FS0~q1,q2,E!

\ G .
~B15!

Finally, collecting the results of Eqs.~B15! and ~B14! and
taking the real part in Eq.~B7! we obtain the uniform ap-
proximation to Eq.~39!.

APPENDIX C: DEMONSTRATION OF EQS. „40… AND „41…

In this appendix we derive Eqs.~40! and ~41!, approxi-
mate expressions for the actionS0(q1,q2,E) and the deter-
minant D0 , respectively. Both relations are valid provide
the control parameteru}uq12q2u is small. Equations~40!
and~41! show that our result for the spectral autocorrelat
function Eq.~39! reduces to the Berry’s one.

Let us start with Eq.~40!. The actionS0 is given by Eq.
~B8! where t0 is determined by the stationary phase con
tion ]R0 /]t52E. For u small,R0 is

R0~q1,q2,t !'
m

2t
uq12q2u22V~q!t ~C1!

@see Eq.~B5! and the discussion preceding it#. The stationary
phase pointt0 is thus

t0'
m

p0~q!
uq12q2u, ~C2!
et

cs

-

r,

03620
n

-

wherep0(q)5A2m@E2V(q)#. By using Eq.~C1! and Eq.
~C2! in Eq. ~B8! we arrive to the approximation Eq.~40!.

For the determinantD0 , from Eq. ~A10! we write

uD0~q1,q2,E!u1/252dU]t0

]EU
1/2

udet@11M0~x,t0!#u21/2U
3detS ]2S0~x,t0!

]p2 D U21/2U
x5x0

~C3!

wherex05(q,p0) is the center of the shortest chord with tip
on a classical trajectory~see Sec. III A!. We used the cente
action S(x,t) instead ofS(x,E) because for any of both
jq(x)52]S/]p. Whenu→0, the centerx0 approaches the
energy shell, the chordj0't0ẋ @t0 is given by Eq.~C2!# well
approximate the classical trajectory in phase space,
henceM0 becomes the identity map, yielding

U]t0

]EU
1/2

5U]2R0

]t2 U21/2U
t5t0

'
m

p0~q!3/2 uq12q2u1/2, ~C4!

where we used Eq.~C1! for R0 . Up to the same order con
sidered in Eq.~C1!, the matrixA in Eq. ~B6! becomes the
identity and

UdetS ]2S0~x,t0!

]p2 D U21/2U
x5x0

'
md/2

ut0ud/25
p0~q!d/2

uq12q2ud/2 . ~C5!

Collecting these results in Eq.~C3! we arrive at Eq.~41!.
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