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Semiclassical spatial correlations in chaotic wave functions
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We study the spatial autocorrelation of energy eigenfunctigg(g]) corresponding to classically chaotic
systems in the semiclassical regime. Our analysis is based on the Weyl-Wigner formalism for the spectral
averageC,(q*,q7,E) of ¢n(a*) ¥k (q7), defined as the average over eigenstates within an energy window
centered ak. In this frameworkC, is the Fourier transform in the momentum space of the spectral Wigner
function W(x,E;e). Our study reveals the chord structure t@atinherits from the spectral Wigner function
showing the interplay between the size of the spectral average window, and the spatial separation scale. We
discuss under which conditions is it possible to define a local system independent regide fardoing so,
we derive an expression that bridges the existing formulas in the literature and find expressions for
C.(9",q,E) valid for any separation sizg*—q|.
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I. INTRODUCTION AND MOTIVATION questions to be answered, one can naively say that it is pos-
sible to separate a “short” universal time from a “long”
One of the key issues in the quantum chaos research is tiystem specific time regime in the description of chaotic
quest for quantum fingerprints of the underlying classicawave functions. This is, in a broad sense, the subject of the
dynamics of generic chaotic systems. In the last decade moptesent paper.
studies of such kind were dedicated to spectral propdities The simplest statistical measure for chaotic wave func-
It is now established that, in general, systems with a classicdions fluctuations is the two-point correlation function
chaotic dynamics are characterized by universal spectréI(q*,q_)=(¢n(q+)¢§(q_)>q, where (---), stands for a
fluctuations, which is the so-called Bohigas conjectitE  local average in configuration space apglq) is the wave
Much insight about this phenomenon was provided by thdunction of thenth energy eigenstate of a given Hamiltonian.
semiclassical approximatio8]. Specifically, it was shown To the best of our knowledge this autocorrelation function
that in the semiclassical reginié—6] the energy level den- was first discussed by BerfyL6], although admittedly very
sity autocorrelation function of a chaotic system, evaluated asimilar ideas about the characterization of chaotic wave func-
energy separations encompassing several mean level spaion were already knowfil7,18. Berry assumed a microca-
ings, displays similar statistical properties as those arisingionical probability density in the classical phase space for
from ensembles of random matricEg]. Starting from the chaotic quantum states and obtained a simple analytical ex-
random matrix side, advances in proving the connection tgression forC(q*,q~). In line with the statistical approach,
the spectral fluctuations of chaotic systems were als&€ was also reobtained by means of supersymmetric tech-
achieved 8,9]. Although a full proof of Bohigas’s conjecture niques in weakly disordered systerfi9,20, and also by
is not yet available, its domain of validity is fairly estab- standard statistical method26]. The later were able to
lished. quantify the fluctuations o€ around Berry’s result for the
Complementary to the universal view there is another sucmean. The correlation functio@ was also numerically veri-
cessful contribution of the semiclassical approach to the refied by eigenfunctions studies of different dynamical systems
search in quantum chaos. To every spectrum correspondirj@1-23 and experimentally observed in eigenmodes of reso-
to a Hamiltonian system there are always deviations from th@ating microwave cavitie§24,25. In all such studies the
universal behavior, i.e., system specific features. For lowagreement was always very good for spatial separations up to
dimensional chaotic systems the later are usually nicely exa few wave lengths, i.e., “short” distances. By correcti@g
plained by identifying the system shortest classical periodidor contributions of classical trajectories for large separations
trajectories. For instance, knowing the actions and the stabilq®—q~|, a recent study due to Hortikar and Srednicki]
ity of all periodic orbits up to a tim& of a given chaotic improved Berry’s formula folC(q*,q7).
system, the semiclassical approximation explains system As a further motivation we add that the understanding of
specific spectral correlations within energy window&  wave function correlations has some interesting direct appli-
=h/T. cation as, for instance, in the description of the conductance
The search for an universal behavior in chaotic wavefluctuations of quantum dots in the Coulomb blockade re-
functions is more elusive. In this case, one faces a differengime[28—-32. With this background in mind, we take a fresh
interplay between the quantum and classical scales where th@ok into the question of eigenstates autocorrelations using
system specific features become important. Actually, the inthe Wigner-Weyl formalism. By doing this we derive a gen-
vestigation of nonuniversal signatures of the classical undereral expression for wave function spatial correlations keep-
lying dynamics in wave functions, such as scgif], is a ing the semiclassical approximation under strict control. We
most fascinating subject to which several theoretical studiesecover as limiting cases Berry’s correlation functjd®] as
were devoted11-15. Whereas there are still several openwell as the aforementioned Hortikar and Srednicki result

1063-651X/2002/668)/03620113)/$20.00 65 036201-1 ©2002 The American Physical Society



FABRICIO TOSCANO AND CAIO H. LEWENKOPF PHYSICAL REVIEW 65 036201

[27]. We furthermore discuss the important role played by H(x)=p?%/2m+V(q), 3)
different kinds of averaging procedures and open a path for
the inclusion of scar contributions. To make the problemthis so-called microcanonical probability density in a
tractable, we start introducing an energy smoothing, thus ded-dimensional configuration space leads to the well-known
fining an averag€. In a sense, this implies that our findings formula[16]
give an improved mean of the autocorrelation funct@rin
distinction to the treatment of fluctuations presentef2®. ~ Jgp1(p(a)|gT—q7|/A)

The structure of the paper is as follows. In Sec. Il we C(q",q )= [p(Qla" —q /A7 T 4
introduce the spectral Wigner functiow, the object on

which this study is built due to its simple relation to the . o _ — (At ;

; : e : p(a)=v2mE-V(a)], g=(q" +q")/2, andJ,(x) is
autocorrelation functiorC(q",q"). There we also disCuss ho pegsel function of order. (The formula encountered in
aspects of the semiclassical apprOX|mat|9nyt‘_¢)r\Nh|ch are  Ref. [16] differs from Eq.(4) by a constant due to normal-
essential to understand the different limiting results forization) Since the above relation does not depend on any

P . i R . )
C(q",q"). Section lll contains the main findings of this g qtem specific features, scaling only with the local momen-
study. We shqw that _the semiclassical apprommauor(:fm_ tum p(q), it directly reveals an universal behavior of chaotic
easier to obtain starting from a phase space representation, i e functions. More recently, Prigodin and cowork@]
particular for smooth potentials. We derive expressions fopyicoscopically obtained the same result for disordered sys-
C(a”,q") depending on the av_era+g|ng7procedure for essengems ysing the nonlinear model, in a regime resembling to
tially any given spatial separatida™—q~|. In Sec. IV we  q,antum chaotic systems. Impressive numerical tests of Eq.
relate our findings with previous analytical and numer|cal(4) were presented, for instance, in Ref22,23, reporting
results Qiscussing their yalidity range. We also [nclude threg)n the study of wave functions corresponding to high lying
appendixes. In Appendix A we show the equivalence begpergy levels of the two-dimensional€2) conformal bil-
tween our expression f&€ with the one derived in Ref27] liard.

in a certain limiting regime. Appendixes B and C are techni- |, spite of the success of E4), one proviso ought to be

cal and devoted to the demonstration of some specific form 546 "Both analytical and numerical results only corroborate
mula appearing in the main text.

Berry’s conjecture if one regards the average ), in a
broader sense. The nonlinear model approach averages
Il. THE SPECTRAL WIGNER FUNCTION over an ensemble of different impurities configurations. In
AND ITS SEMICLASSICAL APPROXIMATION addition to the average over=(q™+q~)/2 covering re-
gions encompassing several de Broglie wavelengths, the lo-
cal averages---)q in Ref. [22] had to be taken over all
directions of @ —q~) for a fixed value of|g*—q~| to

The Wigner function33] of an individual energy eigen-
state|n) is defined by the Weyl transformation

dg i verify Eq. (4).
Wo(x) = q gk ex;{ e ) 1 Some time ago Berr{12,34] formulated a more rigorous
() f (2h)° Yal@)dna) peap @ approach to this subject, which was recently further devel-

oped by Ozorio de Almeid435]. It has been shown that
where the coordinat§q=q+—q*, x=(q,p) is a shorthand Berry’s original conjecture of microcanonical probability
notation for the phase space point wits (" +q~)/2andd  concentratior{16] is semiclassically verified if the average
stands for the number of degrees of freedom of the systemuns over Wigner functions of states belonging to an energy
From Eq. (1) it follows immediately that, upon averaging window containing several leve[42,34,35. This construc-
over the coordinate spage -),, the inverse Weyl transfor- tion is best casted in terms of the spectral Wigner function,
mation of W,,(x) gives the two-point autocorrelation func- namely,
tion

C(a™,a7)=(dn(@" )5 (a)g WOGE:)=(2h) 2 0 E=EnWa(x). (9

- .
:f dp<Wn(u,p>> ex;{l—p-(q*—q)}. where the{E,} are the system eigenenergies. The energy
2 q h smoothing functions, is for convenience chosen as

@ 5.(E—E.)= el

Note that our definition ofC is not normalized by a factor ¢ "V (E-Ey)*+e?’

(|4n(r)[?q " as standard. _ _ _
The essence of Berry’s pioneering wdik6] was to as- N correspondence to an energy window of widtkentered

sume that the averaged Wigner function of a generic chaotigt E. Likewise, we introduce the smoothed eigenstate auto-

quantum statén) of an autonomous system is distributed asCorrelation function

a Dirac ¢ function over the surface of energy,, i.e.,

<W,.1(x))qf>< 6(H(x)—_En)., whereH(x) is the system Hamil- C.(q.q",E)=A> S.(E—En (@) vk (q), (1)

tonian. For a Hamiltonian of the form n

(6)
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where A is the mean level density at ener@y defined as
A=(3,6.(E—E,)).  , with the average taken over the en-
ergy levels contained by the energy windewentered aE.
(When using the semiclassical approximation, for the sake of |
consistencyA is obtained from the Weyl energy level den- Xi
sity, i.e.,A=1/py,.) As follows from Eq.(1), the inverse of
W, directly givesi,(q™) % (q~) rendering

dp a'+q-
+ - _ .
Ce(q ’q rE)_AJ (ZﬂTﬁ)dW( 2 ,p,E,8

X ex '_ J(at—=ag)l. 8 FIG. 1. Chord structure of the semiclassical Weyl propagator,
ZP-(@ —a7) ® . ; .
g. (10), and of the spectral Wigner function E¢L3) in a 2d-

dimensional phase space. For a central painwe show typical
The advantage of using/ is that it provides ways for ame-  chords with their tips connected by classical trajectories on different
nable semiclassical approximations in different energyenergy shells but with the same traversal tim&he dashed line
smoothing regimes, allowing for the analysis ©f at any indicates the locus, on a given energy shgllof all the tips of
given spatial scale separation. Equati@) is the starting chords centered at. The classical trajectories connecting these
point of all results derived in this paper. The remaining parttypes of chords are the semiclassical contribution&/tdhe dashed
of this section is devoted to the presentation of the limitingarea represents the symplectic area corresponding to the action
approximations tdV based on the semiclassical picture of Sx(x,E) (see text
chord and centers, postponing to the forthcoming section the

corresponding analysis &,(q*,q",E). Hw(x), when the latter is of the form given by E). The
first integral at the right-hand side rhs of E@) is the
A. The semiclassical spectral Wigner function symplectic area enclosed by the circuit taken alongjthe

, L trajectory connectings; to xi+ and closed by the chord
The spectral Wigner function is related to the Weyl propa—_fj(x) (see Fig. 1 For autonomous systems the second
gaior Ut(x.) 1€ 7the Weyl transform of the propagator integral is simply the product of the enery corresponding
(q"[exp(=itH/A)|q ), through[12,35 to thejth trajectory, with its traversal timg . The variation

of S; with respect to the independent variab[8§] leads to

7 Et). 9

W(x,E;e)= iRef dt eS“ﬁUt(x)exr<l—Et
12

The semiclassical approximation \dfis directly obtained by 12
inserting in the above equation the semiclassical expressioft sufficiently short times for each phase space paititere
for the Weyl propagatof35], namely, is only one small chord contributing to the sum in Et0).

g The short trajectory connecting the chord end points has a

U= 2 exr{i Sj(x.t) +i,8} Maslov phase3,=0. In distinction, ag is increased, due to
t T [def1+M;(x,t)]]* h s bifurcations there is a proliferation of different chords to be
(100 summed in Eq(10).
The starting point for the semiclassical analysisVdfis

Here the sum is taken over all classical trajectories with thencountered by replacing E(LO) into Eq. (9)
same traversal timewhose phase space end poiwfs are
joined by a chordgj(x):x]-*—xj’ centered aix. Figure 1 o
illustrates the phase space structure beneath the semiclassical W(x,E;e)= mReg fo dt |def 1+ M, (x,t)]| 72
Weyl propagator. The Maslov phase associated withjthe :
classical trajectory is given bg; . In Eq.(10), 1 is the iden- i )
tity and M; is the symplectic matrixor stability matriy. xexp - [S(xD)+Et]+ip
The latter corresponds to the mépj+=/\/lj5xj‘ , resulting
from the linearization of the dynamics in the neighborhoodThis formula exemplifies the general structure of the semi-
of x; . The symbolS;(x,t) stands for the action, also called classical Weyl representation of any quantum object as being

2d+l e*st/h

. (13

center action35], given by given in terms of its classical chord structure in phase space.
In general, this fact is revealed by the use of the stationary
S(x.t)= ddg- _J dt Hufx: (1)1, 11 phase apprOX|mat|o_n to ob.tamthe dqmmant contrlputlons for

() fﬁ ap wb (V)] @) any observable. This premise will guide our analysi€gin

the following section. In the following, we show how the
whereH,y is the Weyl Hamiltonian, i.e., the Weyl symbol of stationary phase method works in the case of the spectral
the Hamiltonian operator. It is worth recalling that the Weyl Wigner function given by Eq(13).
Hamiltonian Hy,(Xx) only coincides with the classical one  The points of stationary phase are the solutions of
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near the energy shella) £> &,,4e When the signatures of all
§[Si(x’t)+ Et]=0. 14 the long trajectories are suppressed éndhe opposite situ-
ation whene<eg,q and more trajectories do contribute.
This equation fixes the traveling time along ftib trajectory ~ Here, to keep the approximation under conteo e gq) iS

t;(E) at the energyE, for which required.
Let us first consider the case whe® g,c. Here, only
Si(x,tj)) +Etj(E)=S;(x,E), (19 one short classical trajectory, with traversal titgefixed by

the stationary phase condition, contributesWb[35]. The
shorter chord in Fig. 1 serves to illustrate this situation. As
x—C, tog approaches the lower integration limit in E@.3)
spoiling the stationary phase approximation. This difficulty
&n be circumvented in the following way. Since the action
S(x,t) is always an odd function df and by changing the
cutoff function, exp{-et/#), for an even one with respect to
t, we write Eq.(13) as

where the actiorg;(x,E) is the symplectic area correspond-
ing to the first integral at the rhs of E¢L1), with the mo-
mentum|p| fixed by the energyE. In other words, the sta-
tionary phase condition selects those trajectory segments th
belong to a single energy shél Thus, for such trajectories,
all the chords centered at have their tips orC. If all the
stationary points;(E) are isolated, which is generally the
case when the chords centered atre sufficiently separated,
we can evaluat®V by stationary phasg35], that yields od Jm e eltl/h

2d+1 S (x,E) WO )= 5 )9 del i+ Mo(x D™
W(x,E;s)=\/m§j: e“i/ﬁAj(x,E)co{JT’wLyJ,

. (18

(16) xexq’%—[so(x,t)nLEt]

where the amplitude is explicitly written as The resulting integrand displays two stationary phase points

12 located attt, that coalesce at=0 asx approacheg. The
, 17 structure of coalescing stationary points at the origin can be
obtained by expanding the center action up to third order in

and we collected the Maslov phases of the classical contri- [35]
butions iny; . If the energy shell is closed and convex and ~—tH _ 148oq4 1
x lies inside it there will be always contributing chords to Eq. SOD =~ = tHW00 = 23 UXHX, (19

(16). To keep the presentation simple we shall only conside{ynerex is the phase space velocity ahdthe Hessian matrix

dt; .
Aj(X,E) = | g def1+ M;(x.t(E))}

convex energy shells in this paper. of the Weyl Hamiltonian, both taken at the phase space point
X. The integral in Eq.(18) can now be evaluated by the
B. The role of the energy average uniform approximation methof36] by invoking a suitable

The smoothings parameter plays an essential role in change_of the integration variable. _Such transformat'pn,
regulating the convergence of the semiclassical approxima=Z(t). is the one that reguceszthe integrand phase in Eq.
tion for the spectral Wigner functiow: as & becomes (18 to the canonical fomz®/3—y°z (see, for instance, Ref.
smaller, longer classical paths start contributing relevantly t¢37))- Mapping the stationary points ¢, into the new ones
the sum in Eq(16). It is customary to define two character- in Z Yields toy=—[3S(x,E)/2] %, Thus, we obtain
istic semiclassical scales fer[12,34). The first one is the

outer scalee|age=1/Tmin, Where 7y, is the period of the W(X.E:e)= d+le*€|to|/ﬁA (XE) 3Sy(x,E)|¥6
shortest periodic orbit, characterizing the typical time to flow T % o 2h

around the energy shell. The second one is the inner scale

esma=N! 7y, Wherery is the Heisenberg time defined by the ([ [3So(x,E)|??

mean level spacing in the considered energy window as XAl = 2% ' (20)

w=nhl/A.

Particularly strong contributions t® arise whenx is  where Ai(y) is the Airy function[38]. This result corrects for
taken in the neighborhood of caustics. At such singulama small mistake in Eq.7.20 of Ref.[35]. It also contains the
points the standard stationary phase approximation is bounelation previously discussed fartaken deep inside the en-
to fail. When the evaluating point approaches a caustic of ergy shell. As the evaluation poirtrecedes front, the Airy
the integrand in Eq(13), generically two or more stationary function argumentin modulug grows very fast. Hence, we
phase pointg;(E) coalesce and so do the correspondingare entitled to employ the Airy function approximation for
chords ;(x). Therefore, we shall also often speak of coa-large negative arguments and retrieve 8d), provided that
lescing chords at caustics. The most important kind of causfor the short trajectoryy,=0.
tics influencingC, will be those at the energy shell itself and ~ As x further approaches the energy sh@llthe spectral
the ones near periodic orbits hAs we will show, the first  Wigner function becomes very simplprovided > &/540-
ones are associated with short times, whereas the others dresuch situation there is an apparent indeterminacy in the
associated with the long time dynamics. Correspondingly wemplitude of Eq(20) since the symplectic are®(x,E) van-
distinguish two energy averaging regimes\vihfor pointsx  ishes and the amplitud&y(x,E) diverges. In this case it is
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an accurate approximation to represent the short trajectory
by the short chord,~tyx, and hence the stability matrix
M becomes the identity. Thus

[E-Hw(x)]*

So(X, E) =t t3xHox = 5V2 O (21)
and 7
dto 1/2 tO —1/2 -il
— = =X X 1
dE ( 5 XHX ) . (22 i
1
Hence, as it was already shoys9,35 '.'
W(x,E;e) 2 i ZLHw)~F : \periodic
=rE=] e |ﬁ2XHoX|l/3 (ﬁZXHOX)1/3 . : bt
29 1 orbi

-

In this situationx—C ande> g4, for the strict semiclas-
sical regime we easily recover the microcanonical probabil- .
ity distribution i )

W(x,E;e)~8(Hw(x)—E), (24)

) ) s . FIG. 2. lllustration of a composition of trajectory segments that
by recalling that lim_oa" “Ai(y/a)=45(y). This result  cosely follow a periodic orbit. Berry's scar formula singles out the
does not come as a surprise, it is just telling us that We&rajectories connecting the tips of the two depicted chords that be-
washed out most quantum interference effects reaching thgme indistinguishable from the period orbitxagpproache<.
classical limit while takings> g ge. It is Only by narrowing
e that one can explore the rich structure of the spectraBerry [18,16, has important semiclassical corrections. The
Wigner function and unveil nontrivial quantum features. Thisdistinction between contributions of the large and short
discussion shall be resumed in a deeper level in the followehords will appear again in the study of the spectral autocor-
ing section, but we can already anticipate that E4) is  relation functionC, in the following section.
remarkably robust.

Let us discuss now the case wher€ sy geandxistaken | CORRELATIONS OF ERGODIC WAVE FUNCTIONS

close to the energy sheil Here, one also has to account for FOR DIFFERENT ENERGY AVERAGING REGIMES
pairs of coalescing chords in E(L3), schematically shown

in Fig. 2. These are the short chords corresponding to long In this section we derive a general semiclassical formula
trajectories orbiting between its tips and winding veryfor C.(q",q",E) expressed in terms of the system classical
closely to a periodic orbit. Wher—C their traversal times chord structure. Our analysis is build on the semiclassical
and actionsS(x,E), become degenerate with those of theapproximations for the spectral Wigner functidnpresented
corresponding periodic orbit. Thus, E0) has to be cor- in the foregoing section.

rected by adding the so-called scar contributions to the spec- For any given pair of points in position spacg, andq ™,

tral Wigner function, first developed by Berf$2] and latter ~ the integral in Eq.(8) is performed over the entire
refined by Ozorio de Almeid&35]. The latter formula de- d-dimensional momentum space. In this study we only con-
scribes the Wigner scars as a peak of extra intensity along thgiderg™ andq~ within classically allowed regions. Hence,
periodic orbits on the energy shell decorated with a fringethe integration momentum space intercepts the energy shell
pattern. As it was shown in Refl15] such Wigner scars and is naturally divided into a domain located in the interior
extend deep inside the energy shell where the spectr&lf C and another at its exterior. This is illustrated in Fig. 3.
Wigner function is semiclassically given by Ed.6) for any ~ For convex energy surfaces, the ones considered here, the
arbitrary value ofe. Indeed, when the action of a periodic spectral Wigner function, whose argument &= (q"

orbit is Bohr quantized the contributions of trajectory seg-+q~)/2, exponentially vanishes for values pfn the phase
ments for chords whose tips lie on the periodic orbit, can bespace region exterior t6. Hence, in general, the main con-
added in phase to E@16). Hence the Wigner scars have an tribution to the integral in Eq(8) arises from momenta in the
enhanced pattern of concentric rings of oscillatory amplitudenterior of C and at its immediate neighborhood. Thus, we are
on a two-dimensional surface defined by the centers of alllowed to bound the effective momentum integration space
the chords with end point on the periodic offfi6]. Only the  in Eq. (8) to the classically allowed momenta. We name the
edge of this surface corresponds to the domain of the Berry’so defined integration space the “momentum space associ-
scars formula. This shows that the semiclassical spectraited tog=(q"+q7)/2.”

Wigner function is in general not restricted to the energy In line with Sec. Il, first we find the general chord struc-
shell, and thus to short chord contributions. In other wordsfure thatC, inherits fromW. This is done by inserting into
we say that the old microcanonical conjecture of Voros anded. (8) the semiclassical expression for the spectral Wigner
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@ (b) FIG. 3. Chord structure of the semiclassical
P p approximation for the spectral autocorrelation
E function C, . The horizontal dashed lines repre-
sent the projection on configuration space of the
r'sd i chordsg, matching the vectorg (gt —q7). The
C points of stationary phase are located on the
d-dimensional associated momentum space to
=(g*+q7)/2 and indicated by asterisks) and
q q dots (@) (see text for details C stands for the
(2d—1)-dimensional surface of constant energy
E whereas the axisq and p represent
d-dimensional surfaces. The semiclassical contri-
butions toC, are given by all trajectories ofi
S P— flowing between the tips of chordg,. Panel(a)
illustrates a typical time reversal symmetric case,

- - - + o +
q q";q q 1 9 ;q ! while (b) a case when this symmetry is absent.
function given by Eq(16), which is valid for any arbitrary. Provided that the stationary poinps are sufficiently far
The resulting integral can be casted as apart from each other, we can safely evalu:ii'teandlj’ by
- the stationary phase method. The latter requires a symme-
*8] (2

trized Legendre transformation in the phases of E&§),
which is conveniently expressed by the standard textbook
action S [35], with variables in the configuration space,

Cs(q+1q_!E):A; W['f(f,q_f)ei”

+1;(q",q7,E)e” "], (25  namely,
with Sj(q™.q7,E)=S;(x;,E)=p;- (" —q"), (28)
i = , ; (ot )
*_od . lre at_ - where x;=(q,p;)) with qg=(q"+q7)/2 and p;
lj=2 fdpAJ(X’E)eXp[ﬁ[S‘(X’E)ip (@ =a)]|. Epj(q*,q*,E). We obtain for the nonoscillatory factor of

(26)  bothl;” andl;

Now we evaluatelji by stationary phase. The stationary § 9?Sj(x,E) ~172 )
phase pointp;=p;(q*,q",E) are solutions of 2°Ai(x; ,E) de( sz—) =|D;[*%, (29
X=X;
]
Jl(a"+a .
o j( > PE||=*(a"~q) 27 where
+ - . 2 2
for 1. We recall that the variation d§;(x,E) with respect J°S J°S
to the independent variablesand p are given in Eq(12). N 4 dq-dq*t 9q JE
Hence, the first member of Eq27) is exactly —&q D(q",q ,E)=(—1)"det 2S S
= _(qu—qj*). In other words, the stationary phase condi- M “E?

tion selects those classicplrajectories in the energy shell
whose projected chords in the configuration space match the
vectors+ (q* —q~). This geometrical structure is sketched : - ;

in Fig. 3, where the projected chords are indicated by dasheathd;;ﬁg?xoithe derivation leading to Bg9) can be found
vectors. In the same figure, the classig¢dtajectories are For time—re;/ersal invariant systems, to evgryajectory
those flowing between the intersections of the momentum inq f - toq" (solution fth, integral *) there
spaces corresponding tp=q~ andg=qg* with the energy panomg romq 1o g (solution of the integray, _
surfaceC. The panela) of Fig. 3 corresponds to time rever- IS a c_orrespondllng tlmeireversed pair going frgm to q

sal symmetric flows, whereab) represents the cases when (s_olutlon of the mte_gralj ). Evidently both t_erms contribute _
this symmetry is absent. The locations of the many possibl/ith the same stationary phase and amplitude to the sum in
stationary phase pointg in the momentum space associated g.(25). Hence

toq=(q*+q~)/2 are indicated by dots and asterisks. While

for - —q* the chords centered at “asterisks” coalesce to ac (qt.q ,E)~ 24 2 e "D (q",q,E)|Y2

zero length chord at the energy sh@llithe ones centered at ~® a.a. (27h) @+ V2 4 iasa

“dots” are typically large. This allow us to name the chords -

centered at “asterisks” as “short” chords and the ones cen- xoo{ S(a".a .E) v 31)
tered at “dots” as “long” chords. h Nty

(30
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where v;=sgr{#S(x,E)/dp®]. This is essentially the main . 2d 1

finding of Ref.[27] N . Fo(d™,q™,)= 2 f dp|de{1+/\/l0(x,t)]|l’2
Let us now discuss the conditions under which E{)

fails. Whenq~ approacheg™, the pointsx; , represented by [ _

asterisks in Fig. 3, move closer to the Jenergy shell. As we xex;){%[so(x,t)+p~(q+—q )]]'

learned in Sec. Il this is a case where the semiclassical ap-

proximation for the spectral Wigner function, from which

Eqg. (31) was obtained, fails. Remarkably, even in this limit The above integral is evaluated by the stationary phase

whereq~ —q" there are “long” chords whose center points method. The stationary phase popy=p,(q*.q".t) is the

X;j, indicated by dots in Fig. 3, are typically far froth Such  ¢qution of

contributions toC, are still well described by Eq31), but

are obviously unrelated to the “short” chords. The approxi- J qt+q°

mation scheme fow developed in the preceding section to — &= %{%<T,p,t>

deal with the classical contributions due to the “short”

chords centered at points close toC, can be also used to In analogy to the case that leads to E2), the phase factor

obtainC, . In the remainder of this section_ we pursue thisiS best written in terms of the standard textbook action
path for two very different energy smoothing regimes and, ;. variables in the configuration space, namely,
obtain a semiclassical approximation Gf valid for any

spatial separation scale within the classical allowed region. oAty — -

pAt this F[))oint an important remark is in order. The cgord Ro(a™.a"1)=So(x0,t) +Po- (A"~ ") @9
structure for a fixed distandg* —q~| sketched in Fig. 3 is
robust upon changes af=(q*-+q~)/2 unless one of the =
pointsg™ reaches the boundary of the classical allowed re-
gion. When this condition is met, the “short” chords coa-

(33

=—("—q). (39

o into Eq. (32) we write C, as

lesce with the “long” ones, corresponding in E@5) to the C.(q",q" ,E)= —A(ﬂmf dtg(t)

case of coalescing stationary points. A semiclassical investi- (27h) -

gation for a similar situation has already been repof&s, i -

but it did not address wave function correlations. This is a Xexr{—q}(tiﬂ)—{—iyo(t)—} (36)
most interesting physical situation owing to its relation to h 4

tunneling rates and possible implications to the already men- ) ]
tioned Coulomb blockade systerfizg8—32. Unfortunately ~ Where vo(t)=sgri#S(x,t)/dp?]. The functiong(t) gives
we were not able to develop a semiclassical approximation té1e amplitude

this problem yet. We avoid it in this paper by restricting our
analysis to pointg© inside the classical allowed region and
distant from its boundary by a couple of de Broglie wave-
lengths.

- P*So(x,)
g(t)zzde e|t|/h 7

—1/2]
de(1+/\/l0(x,t)]de( 5 )‘

. B - _ -

A. Large £ €44 Smoothing regime 'IVYEQ p)aoasglq), 2€;hdqs f(g? +a7)/2, and po=po(a".q .1).
For &> g54c the cutoff parametes suppresses all but the

shortest trajectory contribution to E¢B1). The latter con- d(t,0)=Ry(q*,q7,t) +EL, (39

nects both tips of a “short” chord, (see Fig. 3. As dis-

cussed before, when the cenigrof & approaches the en- where we introduced=|q*—q~| as a control parameter of

ergy shellC, we have to employ the corresponding uniform the integral, i.e.x,—C when §—0.

approximation taw, given by Eq.(20). The integral in Eq.(36) is dominated by the stationary
Instead of directly Fourier transforming the semiclassicalphase points located atty(6,E) corresponding to the tra-

spectral Wigner function, it is advantageous to step back, usgersal time of the shortest trajectory going fragi to q*

W as given by Eq(18), and invert the integration order. That and the one running backwards in time. &s-0, +t,(6,E)

IS coalesce at the origin. This situation again is very similar to
A (= the one encountered in the preceding section when dealing
C.(q".q E)= f dte tVig (gt gt vylth the spectral Wigner function fot near the energy shell
(97.9.E) 2mh ) LD [i.e., the one that leads to EO0)]. The difference is in the

_ functional form of the phasé and on the behavior aj(t)
><exp( E) (32 near the origin. For a Hamiltonian of the form E®@) we
h)’ show in Appendix B that both the phageand the amplitude
g(t) have a singularity at the origin. Notwithstanding, the
integral in Eq.(36) is finite and can be evaluated using the
where uniform approximation methofB7]. The result is

036201-7
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- 27A - (c) Long trajectories connecting “short chords.” The analysis
C.(a".q ,E)=W[|Do(q+,q B of C.(q",q ,E) becomes much clearer in the two cases
namely,x close and far from the energy surfa€ediscussed

, So(g*,q7,E) in the following.
XSO(q+-qu)]12‘]d/21<T)i When the long trajectories have tips on “short” chords,
and g~ approaches|®, the centersi; of these chords ap-

(39 proachC. Here in addition to the trajectories of typ@ and

(b), we have to account for the long trajectories associated

with “short” chords of the type(c) but whose centers are

close toC. Hence, as already discussed, for evaluating points

close to the energy shell we must use a suitalléor Eq.

(8). This is just Berry’'s scar expansion formula in terms

of periodic orbits[12,34,33. Hence, for small distances

gt —q~|, we write

where we left out the smoothing facter ¢/’ since for

practical purposes the conditiag<<f/e is always met. De-
tails about the evaluation of the integral in E§6) leading
to Eq.(39) are found in Appendix B, where we explicitly use
H in the form given by Eq(3).

The above semiclassical approximation @(q*,q ™ ,E)
is valid for any separatiojg™ —q~|, provided the arguments
belong to the classical allowed region. Let us examine the B : B 0 B
small and large separation limits. A5 —q* the shortest ~ C.(q",d ,E)= > clq*,q.E)+Cq*,q ,E)

. ) . j e“long”
trajectory onC is well approximated by the “short” chord 1 ehords

&, and the actiorg, turns into L C*q*,q,E), 43)

+1 B 1 E ~ * - - i
So(a™a7.BE)~Po(@a” ~q whereC!, stands for thgth type(a) orbit corresponding to a
where po(q) = vV2m[E—V(q)]. Hence, the determinam, term in the sum in Eq(31), C? for the type(b) trajectory

, (40)

simplifies to term given by Eq(39), andC*®is the result of Eq(8) for
W taken as the scar expansion formula. We do not intend to
e ap po(q) =372 present here any detailed analysis of this integration, but it is
Do(a™.a"E)] Mgt =g @7 (4D easy to realize that the final result will be an expansion in

terms of all the periodic orbits that pass through the points
[The derivation of Eqs(40) and (41) is found in Appendix 9~ - Such conjecture is further supported by noting that when

C.] Collecting the results, we write 0~ =q" =q the integration Eq(8) reduces to the projection
“down” p of the Berry’s scar expansion. The latter case
L m®mp(a)® % dgo-a(p(a)|at —q 7 |/A) corresponds to Bogomolny formulel1] for scars in the
Clq™,q )= 277 %pu(E) [p(DIa" —q /A7 2 probability density in configuration space, which involves all
v (42) the periodic orbits that pass through the painfsee Ref.
[34]).

and recover, by an appropriate normalization, Berry’s origi- In the other limit, wherlq” —q~| is large, the centers;
nal result Eq(4). In the corresponding opposite limit, when of all the chords sketched in Fig. 3 are far fraginand we
gt —q7| is large, we use the asymptotic expansion of thethus write
Bessel function for large arguments, namely,(x)
~ \2/(mx)cosk—vm/2— m/4) and retrieve the semiclassical C(a*.a E)= Citat:a-.E)+C%a* a .E
approximation given by Eq:31) for the shortest trajectory. Aa7.4 ) {70 a7 B+ Clana B,
(44)
B. Small £ <g44 SMOOthing regime

] ) . ) where we separate the contributie of the shortest trajec-
As the smoothing parameteris shrinked, longer trajec- oy given by the uniform expressia89).

tories have to be taken into account. As a consequence, when |t js interesting to note that both formuléé3) and (44)

£ <&jage, the approximation scheme becomes subtler thaimply that the spectral autocorrelation function has contribu-
the simplified one discussed in Sec. Ill A. Before exploringtions arising fromW taken at points; well inside the energy

this regime, it is useful to remind ourselves that the semiclasghell. |n the case of Eq43) these are the trajectories with
sical contributions to the spectral Wigner function come fromijps on “long” chords. In general, these contributions cannot
orbits connecting the tips of either “short” or *long” chords, he neglected, as already discussed at the end of Sec. II. Par-
as depicted in Fig. 3. We thus classify the classical trajectogicylarly, the “off-shell” scars of the spectral Wigner func-

ries into three categories. tion [15] provide the only periodic orbit contributions far,
(&) Trajectories connecting tips of “long” chords. We already i the case of large separatitqy’ —q~|.

discussed this case at the beginning of Sec. Ill. Here, since
the trajectories are isolated, we just use &4). Difficulties,

if any, arise from the large number of trajectories entering the C. Spatial averaging With £< & arge

sum, as regulated by the We now investigate the effect of spatial averaging on the
(b) Short trajectories connecting “short chords.” These werespectral autocorrelation function. We are interested to know
analyzed in Sec. Il A. under which circumstances this averaging washes out the
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system specific features, allowing one to define a local sysaation of the contributions of trajectories associated with
tem independentor universal regime forC, . Furthermore, “long” chords in the Bogomolny scar formula for the spatial
the additional spatial averaging brings our results into clos@robability densityf11]. In our formalism, the latter is recov-
relation to numerical experiments, such as the ones in Refered after making the local average E45) over the auto-
[22,23. correlation functionC,, Eq. (43), and then takingg®
Defining the local spatial average as —(q" . In other words, the Bogomolny scar formula captures
1 (in configuration spageonly the scar contributions of peri-
y o _ - odic orbits near the energy shell of the spectral Wigner func-
(C.(a.a7.B))q= A(Q) fﬂdqcs(q 4B, (49 tion, since the “off-shell” scar contributionsl 5] are washed
out by the local spatial average.

where() is a configuration space region of surfa&&)) (in

d dimension, covering many “local” de Broglie wave- IV. CONCLUSIONS

lengths\ , across. We defing = 27#/p(q) in terms of the ) ) ) ) )

local momentunp(q), consistent with the semiclassical ap- ~ We investigated the spatial two-point autocorrelation of

proximation. The average is restricted to a regidof clas- ~ energy eigenfunctions,(q) corresponding to classically

sically small variations of the smooth potenti&(q). chaotic systems in the semiclassical regime. We use the
The ubiquitous robustness of Berry’s expression for théNeyI;W@ner formahsin to obtain the spectral average

autocorrelation of chaotic wave functions can be attributed t&.(9",d",E) of #,(q")¢n(q"), defined as the average

the following. At small separatior|§* —q~| the local space OVver eigenstates within an energy windewentered aE. In

average kills the term!, associated with the “long” chords. the considered framework, is just the Fourier transform in

This suppression is due to the fact that such terms oscillate iffomentum space of the spectral Wigner functi(x,E; s).

a scale smallefor at most comparableto the de Broglie The advantage of this formalism comes from the observa-

wavelength. Indeed, for small separation the “long” chordstion thatW is almost like tailor made for semiclassical ap-

are almost parallel to the momentum space and thus its cefoximations. At each phase space pakt,(q,p), the semi-

ters havep]-(q*,q*,E)%O (see Fig. 3 From Eg. (29), classical behavior oW is associated with all the classical

Si(a*,q7,E)~Sj(x; ,E) and thus the local spatial wave- trajectories on the energy sh&llwhose end points are joined

length in Eq.(31) is approximately by a chord centered at These classical contributions are
exponentially suppressed when the trajectory traversal time
aS(x,B)| "t 2mh ist=fle. _ .
Njg=2mh p | = ] j#0. (46) In distinction to most studies so far, this paper addresses
q 1P smooth Hamiltonian systems. Actually, except for Egl)

L . . that is for a time reversal symmetric system and EB9)
This is just about the de Broglle wavelength ?'d@w which holds forH(x) of the form Eq.(3), all the formulas in
~2p(q). Moreover, the requirement of small spatial averag-ys \ork are valid for general smooth autonomous Hamilto-
Ing regions assures thp(q?) IS apprOX|ma+ter constant f@  hians[41]. Our results can evidently be straightforwardly
inside (2. ConsequentlyC, for small |q"—q"| coincides employed to calculateC, in billiard systems, where the
with Berry’s result and remains unaffected by the local SPaphase space structure is much simpler than the one consid-
tial averagq40]. Furthermore, if none of the wave functions greq here. For smooth systems, we show that it is still pos-
inside the energy window from whic@, is built shows a  gjpje to distinguish inC, between a local system indepen-
strong visual scar due to periodic orbits, which is often theyent regime and another one that carries the system classical
case, there is no reason to expect a sizeable correction duedford structure information. This is obviously also valid for
(C3*%)q. Thus, after the averaging the leading contributionpjjliards. The interplay between the spectral average window,
for C, would be the local system independent expression Equhich controls the upper time scale of the classical contribu-
(4). tions, and the spatial separation scale dictates which aspects
Extrapolating ~ our  semiclassical  analysis  of prevails. As a result we obtain semiclassical expressions that

(C.(a".,q7,E))q to energy smoothings of the order of one pridge the existing formulas for the autocorrelation function
energy spacingdi.e., e ~e¢ma), We find that our results are ¢ _.

still consistent with the numerical investigatiofa2,23 of 8-ro the best of our knowledge, the studies@f found in
the autocorrelation functio®(q*,q") [in this case EA(2)]  the literature are based on Green's function methods, and
on individual eigenfunctions for small values [ef* —q"|.  employ a given arbitrary separation between “zero-length”

For instance, in Ref.23] we observe that the corrections to and “long” trajectories. In billiards, due to their simplicity,
Eq. (4) given by(C:**), are small unless the eigenfunction the semiclassical “zero-length” Green’s function is an excel-
has a strong visual scar due to a simple periodic orbit. Liketent approximation to calculat€,, even fore comparable
wise, as Eq(4) is symmetric with respect to the orientations with e, provided that the separation is not too large. In
of (q"—q~) for a fixed value of/q" —q~|, the observed smooth systems corrections accounting for the energy sur-
angular dependence &(q*,q~) [22,23 arrives precisely face curvature become rapidly necessary as the spatial sepa-
from (C3*),. ration is increased. Such corrections, albeit, in principle, fea-
Before concluding we would like to add that the local sible to obtain with the Green’s function method, are easier
spatial average is the mechanism responsible for the elimto estimate with the here employed framework. This is an
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important advantage of the formalism we employ. Our study -RIR_ - Rﬂ
goes beyond that issue showing that the Wigner-Weyl for-  M(x)=
malism is a quite general framework for semiclassical ap-
proximations, clearly revealing the inextricable relation be-
tween the classical chord structure and the choatic wav
function correlations. that
Note addedRecently, another study of the energy average

_ (A4)
R.-R.,R;'R._ —-R,,R._

The justification for the above equation can be found in the
ﬁppendix A of Ref.[12]. It is now straightforward to show

autocorrelation functiorC,(q*,q~,E) has been published de(R,_—R,,—R__+R_,)

[42]. The later improves Hortikar and Srednicki res#f] defl+ M(x)]= del—R, )

by normalizingC, by the semiclassical local level density. - (A5)

The three terms expression that they found arise from the

normalization and bears no relation with our E43) since It remains only to expres&’S/dp? as a function oR to

our C, is not normalized. Obviously, Eq43) contains all  conclude the demonstration. The relation between the second

information of the normalize®, . derivatives of the center actioB(q,p,E) and the stability

matrix M(x) can be obtained by differentiatingy®
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?S  d°S
APPENDIX A: DEMONSTRATION OF EQ. (29) —
i e apaq 0 1
In this appendix we show that both amplitudes in E29) Bx)=3| . 2 and J=| :
. . ; S  9°S 10
are identical, thus proving that R¢27] addresses one of the m %2

limiting cases ofC, studied in this paper. For the sake of
clarity, it is convenient to express both sides of E2P) in

terms of the action defined &&(q™,q",t)=S(q".q",E) Using the obvious identity7 *= — 7 we recast3(x) as
— Et. The variation oR with respect to its independent vari-

(A7)

ables, namelyg™®, g, andt gives[3] B(x)=—J1- M) ][1+M(x)] L (A8)
p*=+dR/Idq" and —E=dr/ot. (A1)  The above relation with the aid of E¢A4) renders
2
It is also convenient to introduce a short notation for the ﬁ—?zZZd(R+,—RH—R,,+R,+)’1. (A9)
second derivatives dR p
PR ap* 7R op Finally, by collecting Egqs(A3), (A5), and(A9) we arrive
T BT
" def 1+ M(x)]d 7S
o PR PR op 3] R T
- aq d aq~’ Tdq aq~’
q Jq q q q (A2) e de(—R, )
- \eE 2%

which form a set of foud-dimensional matrices. D
With the elements at hand, one readily writes - (A10)
R . . 224

D(q",g ,E), as defined in Eqg. (300 by a

(d+1)x(d+1)-dimensional matrix determinar(see, for

instance, Ref[3]) which proves Eq(29).

2p\ —1 at APPENDIX B: DERIVATION OF THE UNIFORM
D:(W) de(_RJr):—((?_E) de{ —R,_). APPROXIMATION EQ. (39)
(A3) In this appendix we evaluate the integral E§6) by the

uniform approximation method to obtain E(9) for the
We switch now to the |hs of EQ.(29. The spectral autocorrelation function. As already mentioned, the
(2dx 2d)-dimensional stability matrix\M(x) is related to integral in Eq.(36) is dominated by its stationary phase
the second derivatives of the acti®as follows: points*+ty(6,E) (solutions ofdR,/dt+E=0), that coalesce
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at the origin as$9— 0. Thus, we start analyzing the structure

of the phaseb(t, 6) and the amplitudg(t) neart=0.

For ®(t,6) we replace the actioR, by the one found in

Eq. (35. We then expand the center actiSp(x,t) [provid-
ing thatpo=po(q™,q~,t) is fixed by the condition Eq:34)],

up to third order int, as in Eq.(19). If the system Hamil-

tonian has the form of Eq3), the expansion reads

’ 1 ,(1av]? 1 oV
So(X, D)~ —tH(X) — 5t mlag T mPaqzP):
(B1)
so for Eqg.(34) we have
FISH t
- =—A 't =(g"— ), B2
Pl m (9,)po=(a"—q ") (B2)

where x,=(q,po), with q=(q"+q7)/2 and A is the
(dxd)-dimensional matrix

t2 9%V

A(q,t):}H‘mEz(Q)- (B3)

Solving Eq. (B2) for p, and using that A~'=1

— (t?/12m) °V/ 9%+ O(t*), we arrive at

Lo mo PV 5
Po(d™.q ’t)_T(q -q )—1—23—(12(Q)+(9(t )
(B4)

wherem(q* —q~)/t comes from the first order term in the

expansion of the center action E®1). Equations(B1) and
(B4) yield

P(t,0)= 510"~ a [P+HE-V(@Jt+B(t,0). (B9

Here the explicit part ofb arises from the lowest order in
Eq.(B1) and®(t, #) is an analytical function of The phase

PHYSICAL REVIEW BE55 036201

24 _ = ()
WRE|(ﬁ,0)=mmREJO dt?ﬂ?

i T
X ex g@(t,a)—ldz, (B7)

where we used thaty(t) =sgri#S(x,t)/dp?], which is the
difference between the number of the positive and negative
eigenvalues 062Sy(x,t)/dp? and is simply equal te- td/|t|
when the energy shell is convéthe case considered in this
study). We have now to deal with a single stationary phase
point ty(60,E), that coalesces with the lowest limit of the
integration, and for which the stationary phase reads

CI)(tO ’ 0) = RO(q+!q7 itO) + EtOESO(q+ iqiaE)- (88)

The uniform approximatiofi37] to Eq. (B7) involves the
suitable change of the integration variable=w(t):[0,
+0)—[0,+%), such that it is invertible and reduces the
phase of the integrand to the canonical form

2
=) < w0,

@(t,0)=% w+ (B9)

adhering tod(t, #) as given by Eq(B5). Likewise, we must
require that the stationary pointst, of ® correspond to the
saddle pointstwo= *=2(6) of ¢ [i.e., 9/ IW|y= -, =0 for
*wo=w(*ty)]. This is achieved by makingz(6)
=Sy(q*",q7,E) [see Eq.(B8)]. Thus, after the change of
variable the integral in EqB7) becomes

® é(w) i o
|(ﬁ,0)=f0 dWWeXF{%d)(W,B)—Id Z}, (B10)
where
G(w) Tt | at
W™ [ w -

andG is an even analytical function @f. In general the next

®(t,6) has a pole of order one at the origin of the complexStep of the method of uniform approximation is to exp&hd

planet.
The behavior ofg(t), defined by Eq(37), neart=0 is
dominated by

—1/2 d/2

*|—d7z|de{«4(q,t)]|71’2,
=Xg

2
o -

ap?

X

(B6)

as seen from Eq(B2). For clarity purposes we introduce

9(t) an analytical function oft,

=7(t)/|t|*2

defined as g(t)

The center actiofs, andpy(q™,q~,t) are odd function of

t [35], and consequently so is the phabét, §). Sinceq(t)
is an even function of, we are allowed to express E@6)

by

aroundwy [37], but in our case is sufficient to keep only the
first term, namely,

= = ot d/2
G(W)%G(Wo)zg(tozt(wo))ﬂ |wo| %,
W:Wo
(B12)
where
at ol owllw=u, 1 Jto| 12
||, 19l [So(a™.am E)E
(B13)

The last equality was obtained by applying the L' Hospital
rule. Now, recalling Eq(29) we write
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= _ a—sltgllh + oo Ei2e (ot q- Ey(d-1)2 wherepo(q) = v2m[E—V(q)]. By using Eq.(C1) and Eg.

G(wo)=e "™ Do(a™,a",E)]"S(a™.q . E) (Bi4) (C2) in Eq. (B8) we arrive to the approximation E¢40).
For the determinanbD,, from Eq.(A10) we write

and using an integral representation of the Hankel’s function

H(Y(z) [38], we have U

2
|Do(q+,q_,E)|1/2:2d% |def 1+ Mo(x,to)]| 2
I(%,0)~ TS (Wo) H{ {SO(qu,q,E)} 2 172
V) + 4 dz=1"dre—-1| = 7 | -
So(q*.q7,E) % xde<‘7 So(é,to)) 3
(B15) ap x=xq

Finally, collecting the results of Eq$B15) and (B14) and
taking the real part in Eq(B7) we obtain the uniform ap- wherex,=(q,p,) is the center of the shortest chord with tips
proximation to Eq(39). on a classical trajectorfsee Sec. Il A. We used the center
action S(x,t) instead ofS(x,E) because for any of both
APPENDIX C: DEMONSTRATION OF EQS. (40) AND (41) &(X)=—0aS/dp. When 6—0, the centex, approaches the
energy shell, the choréy~tyx [tg is given by Eq(C2)] well
approximate the classical trajectory in phase space, and
hence M, becomes the identity map, yielding

In this appendix we derive Eq$40) and (41), approxi-
mate expressions for the acti®(q*,q~,E) and the deter-
minant D, respectively. Both relations are valid provided
the control parameteic|q™ —q~| is small. Equationg40)

and(41) show that our result for the spectral autocorrelation a_to 1/2: 9*Ro| 12 ~ m 9t —q |¥2 (Ca)
function Eq.(39) reduces to the Berry’s one. JE o2 it po(q)372 '
Let us start with Eq(40). The actionS, is given by Eq. 0

(B8) wheret, is determined by the stationary phase condi-
tion Ry /dt=—E. For 6 small,R, is where we used EqC1) for Ry. Up to the same order con-

m sidered in Eq(C1), the matrix.A in Eq. (B6) becomes the

Ro(a".a )~ 5la" —a [*-V(gt  (cy Identity and
[see Eq(B5) and the discussion preceding iThe stationary 9*Sp(X,to) || 72 m¥?  po(q)??
phase point, is thus de ap? TP g —q |7 (€Y
X:XO
ELLUINP C2
to™ po(Q) la"—al, (€2 Collecting these results in EC3) we arrive at Eq(41).
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